scholarly journals Performance and kinetic modeling of modified attached-growth anoxic-oxic-anoxic reactor for onsite sanitation system treating septic tank effluent

Author(s):  
Thammarat Koottatep ◽  
Sittikorn Kamngam ◽  
Chawalit Chaiwong ◽  
Chongrak Polprasert
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1564
Author(s):  
Sara Beck ◽  
Poonyanooch Suwan ◽  
Thusitha Rathnayeke ◽  
Thi Nguyen ◽  
Victor Huanambal-Sovero ◽  
...  

Decentralized wastewater treatment systems enable wastewater to be treated at the source for cleaner discharge into the environment, protecting public health while allowing for reuse for agricultural and other purposes. This study, conducted in Thailand, investigated a decentralized wastewater treatment system incorporating a physical and photochemical process. Domestic wastewater from a university campus and conventional septic tank effluent from a small community were filtered through a woven-fiber microfiltration (WFMF) membrane as pretreatment for ultraviolet (UV) disinfection. In domestic wastewater, WFMF reduced TSS (by 79.8%), turbidity (76.5%), COD (38.5%), and NO3 (41.4%), meeting Thailand irrigation standards for every parameter except BOD. In septic tank effluent, it did not meet Thailand irrigation standards, but reduced TSS (by 77.9%), COD (37.6%), and TKN (13.5%). Bacteria (total coliform and Escherichia coli) and viruses (MS2 bacteriophage) passing through the membrane were disinfected by flow-through UV reactors containing either a low-pressure mercury lamp or light-emitting diodes (LEDs) emitting an average peak wavelength of 276 nm. Despite challenging and variable water quality conditions (2% < UVT < 88%), disinfection was predictable across water types and flow rates for both UV sources using combined variable modeling, which enabled us to estimate log inactivation of other microorganisms. Following UV disinfection, wastewater quality met the WHO standards for unrestricted irrigation.


2009 ◽  
Vol 75 (10) ◽  
pp. 3348-3351 ◽  
Author(s):  
Jill Tomaras ◽  
Jason W. Sahl ◽  
Robert L. Siegrist ◽  
John R. Spear

ABSTRACT Microbial diversity of septic tank effluent (STE) and the biomat that is formed as a result of STE infiltration on soil were characterized by 16S rRNA gene sequence analysis. Results indicate that microbial communities are different within control soil, STE, and the biomat and that microbes found in STE are not found in the biomat. The development of a stable soil biomat appears to provide the best on-site water treatment or protection for subsequent groundwater interactions of STE.


1994 ◽  
Vol 29 (1) ◽  
pp. 19-38 ◽  
Author(s):  
R.N. Coleman ◽  
I.D. Gaudet

Abstract Filter columns were designed, constructed from sand, peat and coarse gravel, and their effectiveness assessed in the treatment of septic tank effluent. An initial loading rate of 4 cm/d was applied to the filter columns in either a downward or upward flow at a temperature of 10°C or 20°C. The loading rate was later increased to 8 cm/d. Filter-column plugging occurred in the downward flow treatment but not in the upward flow treatment. Fecal Coliform removal was usually greater than 95%, BOD removal was greater than 75%, and various removal levels were exhibited for other components. Microbial colonization of peat and gravel was effective as revealed by scanning electron microscopy.


2017 ◽  
Vol 124 ◽  
pp. 138-145 ◽  
Author(s):  
Thi-Dieu-Hien Vo ◽  
Thi-Bich-Ngoc Do ◽  
Xuan-Thanh Bui ◽  
Van-Truc Nguyen ◽  
Dinh-Duc Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document