scholarly journals Turbulence and Rainfall Microphysical Parameters Retrieval and Their Relationship Analysis Based on Wind Profiler Radar Data

Author(s):  
HU Su-man ◽  
HUANG Xing-you ◽  
MA Yu-rong
2001 ◽  
Vol 19 (8) ◽  
pp. 825-836 ◽  
Author(s):  
V. Lehmann ◽  
G. Teschke

Abstract. In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes) from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques) – Radio science (remote sensing; signal processing)


2006 ◽  
Vol 23 (9) ◽  
pp. 1195-1205 ◽  
Author(s):  
V. Chandrasekar ◽  
S. Lim ◽  
E. Gorgucci

Abstract To design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to develop that dataset is through theoretical models. This paper presents a methodology to generate realistic range profiles of radar variables at attenuating frequencies, such as X band, for rain medium. Fundamental microphysical properties of precipitation, namely, size and shape distribution information, are used to generate realistic profiles of X band starting with S-band observation. Conditioning the simulation from S band maintains the natural distribution of rainfall microphysical parameters. Data from the Colorado State University’s University of Chicago–Illinois State Water Survey (CHILL) radar and the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-POL) are used to simulate X-band radar variables. Three procedures to simulate the radar variables and sample applications are presented.


2014 ◽  
Vol 7 (1) ◽  
pp. 135-148 ◽  
Author(s):  
M. Maruri ◽  
J. A. Romo ◽  
L. Gomez

Abstract. It is well known in the scientific community that some remote sensing instruments assume that sample volumes present homogeneous conditions within a defined meteorological profile. At complex topographic sites and under extreme meteorological conditions, this assumption may be fallible depending on the site, and it is more likely to fail in the lower layers of the atmosphere. This piece of work tests the homogeneity of the wind field over a boundary layer wind profiler radar located in complex terrain on the coast under different meteorological conditions. The results reveal the qualitative importance of being aware of deviations in this homogeneity assumption and evaluate its effect on the final product. Patterns of behavior in data have been identified in order to simplify the analysis of the complex signal registered. The quality information obtained from the homogeneity study under different meteorological conditions provides useful indicators for the best alternatives the system can offer to build wind profiles. Finally, the results are also to be considered in order to integrate them in a quality algorithm implemented at the product level.


Author(s):  
M. Satyavani ◽  
P. S. Brahmanandam ◽  
P. S. V. Subba Rao ◽  
M. P. Rao

This study reports diurnal variations of wind directions, wind speed of vector winds, and the evolution of boundary layer (BL) over a mid-latitude measured using a transportable 1290 MHz wind profiling radar located at Cardington (Lat. 52.10ºN; Long. 0.42ºE), Bedfordshire, UK from 17 to 28 April 2010. The horizontal winds show benign behavior during nighttime hours, while winds during daytime hours had magnitudes around, on average, 10-20 m/s, in the majority of the cases. The heights of the boundary layer (BL) varied from as low as ~1100 m to ~2600 km and BL height had shown to have evolved from 0700 universal time (UT) onwards and collapsed by 0000 UT.  Besides, a comparison made between winds measured by the 1290 MHz radar and near-by radiosonde showed a moderate similitude between them, albeit a few discrepancies are found in wind directions and speeds. The possible reasons for these discrepancies could be different volume sensing of observations of these independent observations. An attempt is, therefore, made to calculate radiosonde balloon drifts [1] for the ascending node of the balloons, which had confirmed that the balloons often drifted horizontally as long as up to 100 km. The large drifts, most probably, are the possible reasons for the mismatching of winds measured by these two independent remote sensing instruments.


2013 ◽  
Vol 31 (4) ◽  
pp. 591-598 ◽  
Author(s):  
M. Mihalikova ◽  
S. Kirkwood

Abstract. One of the important mechanisms of stratosphere–troposphere exchange, which brings ozone-rich stratospheric air to low altitudes in extratropical regions, is transport related to tropopause folds. The climatology of folds has been studied at high latitudes of the Northern Hemisphere with the help of radars and global models. Global models supply information about fold occurrence rates at high latitudes of the Southern Hemisphere as well, but so far comparisons with direct measurements are rare. The Moveable Atmospheric Radar for Antarctica (MARA), a 54.5 MHz wind-profiler radar, has been operated at the Norwegian year-round station Troll, Antarctica (72° S, 2.5° E) since December 2011. Frequent tropopause fold signatures have been observed. In this study, based on MARA observations, an occurrence rate statistics of tropopause folds from December 2011 until November 2012 has been made, and radar data have been compared with the analysis from the European Center for Medium-Range Weather Forecasting (ECMWF). The fold occurrence rates exhibit an annual cycle with winter maximum and summer minimum and suggest significantly higher occurrence rates for the given location than those obtained previously by global model studies.


2008 ◽  
Vol 35 (24) ◽  
Author(s):  
C. J. Pan ◽  
H. C. Lai ◽  
S. S. Yang ◽  
K. K. Reddy ◽  
S.-C. Chang

Sign in / Sign up

Export Citation Format

Share Document