scholarly journals Pattern Avoidance in Task-Precedence Posets

2016 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Mitchell Paukner ◽  
Lucy Pepin ◽  
Manda Riehl ◽  
Jarred Wieser

We have extended classical pattern avoidance to a new structure: multiple task-precedence posets whose Hasse diagrams have three levels, which we will call diamonds. The vertices of each diamond are assigned labels which are compatible with the poset. A corresponding permutation is formed by reading these labels by increasing levels, and then from left to right. We used Sage to form enumerative conjectures for the associated permutations avoiding collections of patterns of length three, which we then proved. We have discovered a bijection between diamonds avoiding 132 and certain generalized Dyck paths. We have also found the generating function for descents, and therefore the number of avoiders, in these permutations for the majority of collections of patterns of length three. An interesting application of this work (and the motivating example) can be found when task-precedence posets represent warehouse package fulfillment by robots, in which case avoidance of both 231 and 321 ensures we never stack two heavier packages on top of a lighter package. Comment: 17 pages

2018 ◽  
Vol 27 (1) ◽  
pp. 62-97
Author(s):  
David Callan ◽  
Toufik Mansour

Abstract This paper is one of a series whose goal is to enumerate the avoiders, in the sense of classical pattern avoidance, for each triple of 4-letter patterns. There are 317 symmetry classes of triples of 4-letter patterns, avoiders of 267 of which have already been enumerated. Here we enumerate avoiders for all small Wilf classes that have a representative triple containing the pattern 1342, giving 40 new enumerations and leaving only 13 classes still to be enumerated. In all but one case, we obtain an explicit algebraic generating function that is rational or of degree 2. The remaining one is shown to be algebraic of degree 3. We use standard methods, usually involving detailed consideration of the left to right maxima, and sometimes the initial letters, to obtain an algebraic or functional equation for the generating function.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Jean-Luc Baril

International audience We explore the classical pattern avoidance question in the case of irreducible permutations, <i>i.e.</i>, those in which there is no index $i$ such that $\sigma (i+1) - \sigma (i)=1$. The problem is addressed completely in the case of avoiding one or two patterns of length three, and several well known sequences are encountered in the process, such as Catalan, Motzkin, Fibonacci, Tribonacci, Padovan and Binary numbers. Also, we present constructive bijections between the set of Motzkin paths of length $n-1$ and the sets of irreducible permutations of length $n$ (respectively fixed point free irreducible involutions of length $2n$) avoiding a pattern $\alpha$ for $\alpha \in \{132,213,321\}$. This induces two new bijections between the set of Dyck paths and some restricted sets of permutations.


2019 ◽  
Vol 28 (1) ◽  
pp. 14-69
Author(s):  
David Callan ◽  
Toufik Mansour ◽  
Mark Shattuck

Abstract This paper basically completes a project to enumerate permutations avoiding a triple T of 4-letter patterns, in the sense of classical pattern avoidance, for every T. There are 317 symmetry classes of such triples T and previous papers have enumerated avoiders for all but 14 of them. One of these 14 is conjectured not to have an algebraic generating function. Here, we find the generating function for each of the remaining 13, and it is algebraic in each case.


10.37236/6210 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Michał Dębski ◽  
Urszula Pastwa ◽  
Krzysztof Węsek

Motivated by a geometrical Thue-type problem, we introduce a new variant of the classical pattern avoidance in words, where jumping over a letter in the pattern occurrence is allowed. We say that pattern $p\in E^+$ occurs with jumps in a word $w=a_1a_2\ldots a_k \in A^+$, if there exist a non-erasing morphism $f$ from $E^*$ to $A^*$ and a sequence $(i_1, i_2, \ldots , i_l)$ satisfying $i_{j+1}\in\{ i_j+1, i_j+2 \}$ for $j=1, 2, \ldots, l-1$, such that $f(p) = a_{i_1}a_{i_2}\ldots a_{i_l}.$ For example, a pattern $xx$ occurs with jumps in a word $abdcadbc$ (for $x \mapsto abc$). A pattern $p$ is grasshopper $k$-avoidable if there exists an alphabet $A$ of $k$ elements, such that there exist arbitrarily long words over $A$ in which $p$ does not occur with jumps. The minimal such $k$ is the grasshopper avoidability index of $p$. It appears that this notion is related to two other problems: pattern avoidance on graphs and pattern-free colorings of the Euclidean plane. In particular, we show that a sequence avoiding a pattern $p$ with jumps can be a tool to construct a line $p$-free coloring of $\mathbb{R}^2$.    In our work, we determine the grasshopper avoidability index of patterns $\alpha^n$ for all $n$ except $n=5$. We also show that every doubled pattern is grasshopper $(2^7+1)$-avoidable, every pattern on $k$ variables of length at least $2^k$ is grasshopper $37$-avoidable, and there exists a constant $c$ such that every pattern of length at least $c$ on $2$ variables is grasshopper $3$-avoidable (those results are proved using the entropy compression method).


10.37236/1957 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
M. D. Atkinson ◽  
M. M. Murphy ◽  
N. Ruškuc

Pattern avoidance classes of permutations that cannot be expressed as unions of proper subclasses can be described as the set of subpermutations of a single bijection. In the case that this bijection is a permutation of the natural numbers a structure theorem is given. The structure theorem shows that the class is almost closed under direct sums or has a rational generating function.


2017 ◽  
Vol 09 (06) ◽  
pp. 1750077
Author(s):  
Kairi Kangro ◽  
Mozhgan Pourmoradnasseri ◽  
Dirk Oliver Theis

A dispersed Dyck path (DDP) of length [Formula: see text] is a lattice path on [Formula: see text] from [Formula: see text] to [Formula: see text] in which the following steps are allowed: “up” [Formula: see text]; “down” [Formula: see text]; and “right” [Formula: see text]. An ascent in a DDP is an inclusion-wise maximal sequence of consecutive up steps. A 1-ascent is an ascent consisting of exactly 1 up step. We give a closed formula for the total number of 1-ascents in all dispersed Dyck paths of length [Formula: see text], #A191386 in Sloane’s OEIS. Previously, only implicit generating function relations and asymptotics were known.


10.37236/859 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Marcos Kiwi ◽  
Martin Loebl

We address the following question: When a randomly chosen regular bipartite multi–graph is drawn in the plane in the "standard way", what is the distribution of its maximum size planar matching (set of non–crossing disjoint edges) and maximum size planar subgraph (set of non–crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) problem (also called Ulam's problem). We present combinatorial identities which relate the number of $r$-regular bipartite multi–graphs with maximum planar matching (maximum planar subgraph) of at most $d$ edges to a signed sum of restricted lattice walks in ${\Bbb Z}^d$, and to the number of pairs of standard Young tableaux of the same shape and with a "descend–type" property. Our results are derived via generalizations of two combinatorial proofs through which Gessel's identity can be obtained (an identity that is crucial in the derivation of a bivariate generating function associated to the distribution of the length of LISs, and key to the analytic attack on Ulam's problem). Finally, we generalize Gessel's identity. This enables us to count, for small values of $d$ and $r$, the number of $r$-regular bipartite multi-graphs on $n$ nodes per color class with maximum planar matchings of size $d$.Our work can also be viewed as a first step in the study of pattern avoidance in ordered bipartite multi-graphs.


10.37236/4479 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Andrew M. Baxter ◽  
Lara K. Pudwell

Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length $n$ avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound.


2015 ◽  
Vol 25 (2) ◽  
pp. 157-176 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

Abstract A permutation of length n may be represented, equivalently, by a sequence a1a2 • • • an satisfying 0 < ai < i for all z, which is called an inversion sequence. In analogy to the usual case for permutations, the pattern avoidance question is addressed for inversion sequences. In particular, explicit formulas and/or generating functions are derived which count the inversion sequences of a given length that avoid a single pattern of length three. Among the sequences encountered are the Fibonacci numbers, the Schröder numbers, and entry A200753 in OEIS. We make use of both algebraic and combinatorial methods to establish our results. An explicit Injection is given between two of the avoidance classes, and in three cases, the kernel method is used to solve a functional equation satisfied by the generating function enumerating the class in question.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Mathilde Bouvel ◽  
Adeline Pierrot ◽  
Carine Pivoteau ◽  
Dominique Rossin

International audience This article presents a methodology that automatically derives a combinatorial specification for the permutation class $\mathcal{C} = Av(B)$, given its basis $B$ of excluded patterns and the set of simple permutations in $\mathcal{C}$, when these sets are both finite. This is achieved considering both pattern avoidance and pattern containment constraints in permutations.The obtained specification yields a system of equations satisfied by the generating function of $\mathcal{C}$, this system being always positive and algebraic. It also yields a uniform random sampler of permutations in $\mathcal{C}$. The method presented is fully algorithmic. Cet article présente une méthodologie qui calcule automatiquement une spécification combinatoire pour la classe de permutations $\mathcal{C} = Av(B)$, étant donnés une base $B$ de motifs interdits et l’ensemble des permutations simples de $\mathcal{C}$, lorsque ces deux ensembles sont finis. Ce résultat est obtenu en considérant à la fois des contraintes de motifs interdits et de motifs obligatoires dans les permutations. La spécification obtenue donne un système d’équations satisfait par la série génératrice de la classe $\mathcal{C}$, système qui est toujours positif et algébrique. Elle fournit aussi un générateur aléatoire uniforme de permutations dans $\mathcal{C}$. La méthode présentée est complètement algorithmique.


Sign in / Sign up

Export Citation Format

Share Document