scholarly journals An approximability-related parameter on graphs―-properties and applications

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Robert Engström ◽  
Tommy Färnqvist ◽  
Peter Jonsson ◽  
Johan Thapper

Graph Theory International audience We introduce a binary parameter on optimisation problems called separation. The parameter is used to relate the approximation ratios of different optimisation problems; in other words, we can convert approximability (and non-approximability) result for one problem into (non)-approximability results for other problems. Our main application is the problem (weighted) maximum H-colourable subgraph (Max H-Col), which is a restriction of the general maximum constraint satisfaction problem (Max CSP) to a single, binary, and symmetric relation. Using known approximation ratios for Max k-cut, we obtain general asymptotic approximability results for Max H-Col for an arbitrary graph H. For several classes of graphs, we provide near-optimal results under the unique games conjecture. We also investigate separation as a graph parameter. In this vein, we study its properties on circular complete graphs. Furthermore, we establish a close connection to work by Šámal on cubical colourings of graphs. This connection shows that our parameter is closely related to a special type of chromatic number. We believe that this insight may turn out to be crucial for understanding the behaviour of the parameter, and in the longer term, for understanding the approximability of optimisation problems such as Max H-Col.

2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Anthony Bonato ◽  
William B. Kinnersley ◽  
Pawel Pralat

Graph Theory International audience We study a two-person game played on graphs based on the widely studied chip-firing game. Players Max and Min alternately place chips on the vertices of a graph. When a vertex accumulates as many chips as its degree, it fires, sending one chip to each neighbour; this may in turn cause other vertices to fire. The game ends when vertices continue firing forever. Min seeks to minimize the number of chips played during the game, while Max seeks to maximize it. When both players play optimally, the length of the game is the toppling number of a graph G, and is denoted by t(G). By considering strategies for both players and investigating the evolution of the game with differential equations, we provide asymptotic bounds on the toppling number of the complete graph. In particular, we prove that for sufficiently large n 0.596400 n2 < t(Kn) < 0.637152 n2. Using a fractional version of the game, we couple the toppling numbers of complete graphs and the binomial random graph G(n,p). It is shown that for pn ≥n² / √ log(n) asymptotically almost surely t(G(n,p))=(1+o(1)) p t(Kn).


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Mariusz Grech ◽  
Andrzej Kisielewicz

Graph Theory International audience In this paper we describe all edge-colored graphs that are fully symmetric with respect to colors and transitive on every set of edges of the same color. They correspond to fully symmetric homogeneous factorizations of complete graphs. Our description completes the work done in our previous paper, where we have shown, in particular, that there are no such graphs with more than 5 colors. Using some recent results, with a help of computer, we settle all the cases that was left open in the previous paper.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Vladimir Deineko ◽  
Peter Jonsson ◽  
Mikael Klasson ◽  
Andrei Krokhin

International audience In the maximum constraint satisfaction problem ($\mathrm{Max \; CSP}$), one is given a finite collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values from a given finite domain to the variables so as to maximise the number (or the total weight) of satisfied constraints. This problem is $\mathrm{NP}$-hard in general so it is natural to study how restricting the allowed types of constraints affects the complexity of the problem. In this paper, we show that any $\mathrm{Max \; CSP}$ problem with a finite set of allowed constraint types, which includes all constants (i.e. constraints of the form $x=a$), is either solvable in polynomial time or is $\mathrm{NP}$-complete. Moreover, we present a simple description of all polynomial-time solvable cases of our problem. This description uses the well-known combinatorial property of supermodularity.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-35
Author(s):  
Joshua Brakensiek ◽  
Venkatesan Guruswami

The Unique Games Conjecture has pinned down the approximability of all constraint satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers the optimal worst-case approximation ratio for any CSP. This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent in the Unique Games Conjecture. This work is motivated by the pursuit of a better understanding of the approximability of perfectly satisfiable instances of CSPs. We prove that an “almost Unique” version of Label Cover can be approximated within a constant factor on satisfiable instances. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover that we call V Label Cover . Assuming a conjecture concerning the inapproximability of V Label Cover on perfectly satisfiable instances, we prove the following implications: • There is an absolute constant c 0 such that for k ≥ 3, given a satisfiable instance of Boolean k -CSP, it is hard to find an assignment satisfying more than c 0 k 2 /2 k fraction of the constraints. • Given a k -uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q -strongly colorable or has no independent set with an ε fraction of vertices, where q =⌈ k +√ k -1/2⌉. • Given a k -uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is ( k -1)-rainbow colorable or has no independent set with an ε fraction of vertices.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Mark Kayll ◽  
Dave Perkins

Graph Theory International audience We introduce a variation of chip-firing games on connected graphs. These 'burn-off' games incorporate the loss of energy that may occur in the physical processes that classical chip-firing games have been used to model. For a graph G=(V,E), a configuration of 'chips' on its nodes is a mapping C:V→ℕ. We study the configurations that can arise in the course of iterating a burn-off game. After characterizing the 'relaxed legal' configurations for general graphs, we enumerate the 'legal' ones for complete graphs Kn. The number of relaxed legal configurations on Kn coincides with the number tn+1 of spanning trees of Kn+1. Since our algorithmic, bijective proof of this fact does not invoke Cayley's Formula for tn, our main results yield secondarily a new proof of this formula.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel Bodirsky ◽  
Bertalan Bodor

Abstract Let K exp + \mathcal{K}_{{\operatorname{exp}}{+}} be the class of all structures 𝔄 such that the automorphism group of 𝔄 has at most c ⁢ n d ⁢ n cn^{dn} orbits in its componentwise action on the set of 𝑛-tuples with pairwise distinct entries, for some constants c , d c,d with d < 1 d<1 . We show that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of finite covers of first-order reducts of unary structures, and also that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of first-order reducts of finite covers of unary structures. It follows that the class of first-order reducts of finite covers of unary structures is closed under taking model companions and model-complete cores, which is an important property when studying the constraint satisfaction problem for structures from K exp + \mathcal{K}_{{\operatorname{exp}}{+}} . We also show that Thomas’ conjecture holds for K exp + \mathcal{K}_{{\operatorname{exp}}{+}} : all structures in K exp + \mathcal{K}_{{\operatorname{exp}}{+}} have finitely many first-order reducts up to first-order interdefinability.


Sign in / Sign up

Export Citation Format

Share Document