scholarly journals Ore and Erdős type conditions for long cycles in balanced bipartite graphs

2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus

Graphs and Algorithms International audience We conjecture Ore and Erdős type criteria for a balanced bipartite graph of order 2n to contain a long cycle C(2n-2k), where 0 <= k < n/2. For k = 0, these are the classical hamiltonicity criteria of Moon and Moser. The main two results of the paper assert that our conjectures hold for k = 1 as well.

2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Lech Adamus

Graphs and Algorithms International audience The following problem was solved by Woodall in 1972: for any pair of nonnegative integers n and k < n/2 - 1 find the minimum integer g(n, k) such that every graph with n vertices and at least g(n, k) edges contains a cycle of length n - k. Woodall proved even more: the size g(n, k), in fact, guarantees the existence of cycles C, for all 3 <= p <= n - k. <br> <br> In the paper an analogous problem for bipartite graphs is considered. It is proved that every bipartite graph with color classes of cardinalities m and n, m <= n, and size greater than n(m - k - 1) + k + 1 contains a cycle of length 2m - 2k, where m >= 1/2k(2) + 3/2k + 4, k is an element of N. The bound on the number of edges is best possible. Moreover, this size condition guarantees the existence of cycles of all even lengths up to 2m - 2k. We also characterize all extremal graphs for this problem. Finally, we conjecture that the condition on the order may be relaxed to m >= 2k + 2.


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Sunil Chandran ◽  
Rogers Mathew

Graph Theory International audience Let k be an integer and k ≥3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if Gm is chordal then so is Gm+2. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.] showed that if Gm is k-chordal, then so is Gm+2. Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power G[m] of a bipartite graph G is the bipartite graph obtained from G by adding edges (u,v) where dG(u,v) is odd and less than or equal to m. Note that G[m] = G[m+1] for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G[m], where k, m are positive integers with k≥4.


2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Hongliang Lu

International audience Let $G$ be a graph and $\mathcal{S}$ be a subset of $Z$. A vertex-coloring $\mathcal{S}$-edge-weighting of $G$ is an assignment of weights by the elements of $\mathcal{S}$ to each edge of $G$ so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring $\mathcal{S}$-edge-weighting for $\mathcal{S} = \{1,2 \}$ (H. Lu, Q. Yu and C. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combin., 32 (2011), 22-27). In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring $\mathcal{S}$-edge-weighting for $\mathcal{S} \in \{ \{ 0,1 \} , \{1,2 \} \}$. These bounds we obtain are tight, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring $\mathcal{S}$-edge-weightings for $\mathcal{S} \in \{ \{ 0,1 \} , \{1,2 \} \}$.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Grant Cairns ◽  
Stacey Mendan

Graph Theory International audience We show that if the two parts of a finite bipartite graph have the same degree sequence, then there is a bipartite graph, with the same degree sequences, which is symmetric, in that it has an involutive graph automorphism that interchanges its two parts. To prove this, we study the relationship between symmetric bipartite graphs and graphs with loops.


2014 ◽  
Vol Vol. 16 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Rebecca Stones

Analysis of Algorithms International audience Let fm,n,h be the number of spanning forests with h edges in the complete bipartite graph Km,n. Kirchhoff\textquoterights Matrix Tree Theorem implies fm,n,m+n-1=mn-1 nm-1 when m &#x2265;1 and n &#x2265;1, since fm,n,m+n-1 is the number of spanning trees in Km,n. In this paper, we give an algorithm for computing fm,n,h for general m,n,h. We implement this algorithm and use it to compute all non-zero fm,n,h when m &#x2264;50 and n &#x2264;50 in under 2 days.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yinglei Song

Abstract In this paper, we study the parameterized complexity of the induced matching problem in hamiltonian bipartite graphs and the inapproximability of the maximum induced matching problem in hamiltonian bipartite graphs. We show that, given a hamiltonian bipartite graph, the induced matching problem is W[1]-hard and cannot be solved in time n o ⁢ ( k ) {n^{o(\sqrt{k})}} , where n is the number of vertices in the graph, unless the 3SAT problem can be solved in subexponential time. In addition, we show that unless NP = P {\operatorname{NP}=\operatorname{P}} , a maximum induced matching in a hamiltonian bipartite graph cannot be approximated within a ratio of n 1 / 4 - ϵ {n^{1/4-\epsilon}} , where n is the number of vertices in the graph.


2010 ◽  
Vol Vol. 12 no. 1 ◽  
Author(s):  
Therese Biedl ◽  
Michal Stern

International audience Edge-intersection graphs of paths in grids are graphs that can be represented such that vertices are paths in a grid and edges between vertices of the graph exist whenever two grid paths share a grid edge. This type of graphs is motivated by applications in conflict resolution of paths in grid networks. In this paper, we continue the study of edge-intersection graphs of paths in a grid, which was initiated by Golumbic, Lipshteyn and Stern. We show that for any k, if the number of bends in each path is restricted to be at most k, then not all graphs can be represented. Then we study some graph classes that can be represented with k-bend paths, for small k. We show that every planar graph has a representation with 5-bend paths, every outerplanar graph has a representation with 3-bend paths, and every planar bipartite graph has a representation with 2-bend paths. We also study line graphs, graphs of bounded pathwidth, and graphs with -regular edge orientations.


2013 ◽  
Vol 22 (5) ◽  
pp. 783-799 ◽  
Author(s):  
GUILLEM PERARNAU ◽  
ORIOL SERRA

A perfect matchingMin an edge-coloured complete bipartite graphKn,nis rainbow if no pair of edges inMhave the same colour. We obtain asymptotic enumeration results for the number of rainbow perfect matchings in terms of the maximum number of occurrences of each colour. We also consider two natural models of random edge-colourings ofKn,nand show that if the number of colours is at leastn, then there is with high probability a rainbow perfect matching. This in particular shows that almost every square matrix of ordernin which every entry appearsntimes has a Latin transversal.


Sign in / Sign up

Export Citation Format

Share Document