scholarly journals Cubical coloring — fractional covering by cuts and semidefinite programming

2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Robert Šámal

International audience We introduce a new graph parameter that measures fractional covering of a graph by cuts. Besides being interesting in its own right, it is useful for study of homomorphisms and tension-continuous mappings. We study the relations with chromatic number, bipartite density, and other graph parameters. We find the value of our parameter for a family of graphs based on hypercubes. These graphs play for our parameter the role that cliques play for the chromatic number and Kneser graphs for the fractional chromatic number. The fact that the defined parameter attains on these graphs the correct value suggests that our definition is a natural one. In the proof we use the eigenvalue bound for maximum cut and a recent result of Engström, Färnqvist, Jonsson, and Thapper [An approximability-related parameter on graphs – properties and applications, DMTCS vol. 17:1, 2015, 33–66]. We also provide a polynomial time approximation algorithm based on semidefinite programming and in particular on vector chromatic number (defined by Karger, Motwani and Sudan [Approximate graph coloring by semidefinite programming, J. ACM 45 (1998), no. 2, 246–265]).

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Brice Effantin ◽  
Hamamache Kheddouci

International audience The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.


2010 ◽  
Vol 4 (1) ◽  
pp. 5-24 ◽  
Author(s):  
Michael O. Albertson ◽  
Debra L. Boutin ◽  
Ellen Gethner

2018 ◽  
Vol 6 (1) ◽  
pp. 343-356
Author(s):  
K. Arathi Bhat ◽  
G. Sudhakara

Abstract In this paper, we introduce the notion of perfect matching property for a k-partition of vertex set of given graph. We consider nontrivial graphs G and GPk , the k-complement of graph G with respect to a kpartition of V(G), to prove that A(G)A(GPk ) is realizable as a graph if and only if P satis_es perfect matching property. For A(G)A(GPk ) = A(Γ) for some graph Γ, we obtain graph parameters such as chromatic number, domination number etc., for those graphs and characterization of P is given for which GPk and Γ are isomorphic. Given a 1-factor graph G with 2n vertices, we propose a partition P for which GPk is a graph of rank r and A(G)A(GPk ) is graphical, where n ≤ r ≤ 2n. Motivated by the result of characterizing decomposable Kn,n into commuting perfect matchings [2], we characterize complete k-partite graph Kn1,n2,...,nk which has a commuting decomposition into a perfect matching and its k-complement.


2011 ◽  
Vol 24 (4) ◽  
pp. 432-437 ◽  
Author(s):  
Pierre Charbit ◽  
Jean Sébastien Sereni

2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


10.37236/1140 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Nathan Linial ◽  
Michael Saks ◽  
David Statter

Two sets are non-crossing if they are disjoint or one contains the other. The non-crossing graph ${\rm NC}_n$ is the graph whose vertex set is the set of nonempty subsets of $[n]=\{1,\ldots,n\}$ with an edge between any two non-crossing sets. Various facts, some new and some already known, concerning the chromatic number, fractional chromatic number, independence number, clique number and clique cover number of this graph are presented. For the chromatic number of this graph we show: $$ n(\log_e n -\Theta(1)) \le \chi({\rm NC}_n) \le n (\lceil\log_2 n\rceil-1). $$


Sign in / Sign up

Export Citation Format

Share Document