scholarly journals Edge Disjoint Hamilton Cycles in Knödel Graphs

2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Palanivel Subramania Nadar Paulraja ◽  
S Sampath Kumar

International audience The vertices of the Knödel graph $W_{\Delta, n}$ on $n \geq 2$ vertices, $n$ even, and of maximum degree $\Delta, 1 \leq \Delta \leq \lfloor log_2(n) \rfloor$, are the pairs $(i,j)$ with $i=1,2$ and $0 \leq j \leq \frac{n}{2} -1$. For $0 \leq j \leq \frac{n}{2} -1$, there is an edge between vertex $(1,j)$ and every vertex $(2,j + 2^k - 1 (mod \frac{n}{2}))$, for $k=0,1,2, \ldots , \Delta -1$. Existence of a Hamilton cycle decomposition of $W_{k, 2k}, k \geq 6$ is not yet known, see Discrete Appl. Math. 137 (2004) 173-195. In this paper, it is shown that the $k$-regular Knödel graph $W_{k,2k}, k \geq 6$ has $ \lfloor \frac{k}{2} \rfloor - 1$ edge disjoint Hamilton cycles.

2020 ◽  
Vol 29 (6) ◽  
pp. 886-899
Author(s):  
Anita Liebenau ◽  
Yanitsa Pehova

AbstractA diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


1998 ◽  
Vol 08 (03) ◽  
pp. 371-385 ◽  
Author(s):  
J.-C. Bermond ◽  
E. Darrot ◽  
O. Delmas ◽  
S. Perennes

In this paper, we prove that the wrapped Butterfly graph WBF(d,n) of degree d and dimension n is decomposable into Hamilton cycles. This answers a conjecture of Barth and Raspaud who solved the case d = 2.


10.37236/2055 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze ◽  
Andrzej Ruciński

Let $K_n^{(k)}$ be the complete $k$-uniform hypergraph, $k\ge3$, and let $\ell$ be an integer such that $1\le \ell\le k-1$ and $k-\ell$ divides $n$. An $\ell$-overlapping Hamilton cycle in $K_n^{(k)}$ is a spanning subhypergraph $C$ of  $K_n^{(k)}$  with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.We show that, for some constant $c=c(k,\ell)$ and sufficiently large $n$, for every coloring (partition) of the edges of $K_n^{(k)}$ which uses arbitrarily many colors but no color appears more than $cn^{k-\ell}$ times, there exists a rainbow $\ell$-overlapping Hamilton cycle $C$, that is every edge of $C$ receives a different color. We also prove that, for some constant $c'=c'(k,\ell)$ and sufficiently large $n$, for every coloring of the edges of $K_n^{(k)}$ in which the maximum degree of the subhypergraph induced by any single color is bounded by $c'n^{k-\ell}$,  there exists a properly colored $\ell$-overlapping Hamilton cycle $C$, that is every two adjacent edges receive different colors. For $\ell=1$, both results are (trivially) best possible up to the constants. It is an open question if our results are also optimal for $2\le\ell\le k-1$.The proofs  rely on a version of the Lovász Local Lemma and incorporate some ideas from Albert, Frieze, and Reed.


2017 ◽  
Vol 26 (6) ◽  
pp. 839-849
Author(s):  
ASAF FERBER ◽  
KYLE LUH ◽  
DANIEL MONTEALEGRE ◽  
OANH NGUYEN

A subsetCof edges in ak-uniform hypergraphHis aloose Hamilton cycleifCcovers all the vertices ofHand there exists a cyclic ordering of these vertices such that the edges inCare segments of that order and such that every two consecutive edges share exactly one vertex. The binomial randomk-uniform hypergraphHkn,phas vertex set [n] and an edge setEobtained by adding eachk-tuplee∈ ($\binom{[n]}{k}$) toEwith probabilityp, independently at random.Here we consider the problem of finding edge-disjoint loose Hamilton cycles covering all buto(|E|) edges, referred to as thepacking problem. While it is known that the threshold probability of the appearance of a loose Hamilton cycle inHkn,pis$p=\Theta\biggl(\frac{\log n}{n^{k-1}}\biggr),$the best known bounds for the packing problem are aroundp= polylog(n)/n. Here we make substantial progress and prove the following asymptotically (up to a polylog(n) factor) best possible result: forp≥ logCn/nk−1, a randomk-uniform hypergraphHkn,pwith high probability contains$N:=(1-o(1))\frac{\binom{n}{k}p}{n/(k-1)}$edge-disjoint loose Hamilton cycles.Our proof utilizes and modifies the idea of ‘online sprinkling’ recently introduced by Vu and the first author.


Author(s):  
Stefan Glock ◽  
Stephen Gould ◽  
Felix Joos ◽  
Daniela Kühn ◽  
Deryk Osthus

Abstract A tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic ordering of the vertices of G such that every set of k consecutive vertices in the ordering forms an edge. Rödl, Ruciński and Szemerédi proved that for $k\ge 3$ , every k-graph on n vertices with minimum codegree at least $n/2+o(n)$ contains a tight Hamilton cycle. We show that the number of tight Hamilton cycles in such k-graphs is ${\exp(n\ln n-\Theta(n))}$ . As a corollary, we obtain a similar estimate on the number of Hamilton ${\ell}$ -cycles in such k-graphs for all ${\ell\in\{0,\ldots,k-1\}}$ , which makes progress on a question of Ferber, Krivelevich and Sudakov.


Author(s):  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti

The total irregularity index of a graph [Formula: see text] is defined by Abdo et al. [H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 201–206] as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In 2014, You et al. [L. H. You, J. S. Yang and Z. F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Unicyclic graphs) and Zhou et al. [L. H. You, J. S. Yang, Y. X. Zhu and Z. F. You, The maximal total irregularity of bicyclic graphs, J. Appl. Math. 2014 (2014) 785084, http://dx.doi.org/10.1155/2014/785084 ] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Bicyclic graphs). In this paper, we characterize the aforementioned graphs with an alternative but comparatively simple approach. Also, we characterized the graphs having maximum [Formula: see text] value among the classes [Formula: see text] (Tricyclic graphs), [Formula: see text] (Tetracyclic graphs), [Formula: see text] (Pentacyclic graphs) and [Formula: see text] (Hexacyclic graphs).


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Audrey Lee ◽  
Ileana Streinu

International audience A multi-graph $G$ on n vertices is $(k,l)$-sparse if every subset of $n'≤n$ vertices spans at most $kn'-l$ edges, $0 ≤l < 2k$. $G$ is tight if, in addition, it has exactly $kn - l$ edges. We characterize $(k,l)$-sparse graphs via a family of simple, elegant and efficient algorithms called the $(k,l)$-pebble games. As applications, we use the pebble games for computing components (maximal tight subgraphs) in sparse graphs, to obtain inductive (Henneberg) constructions, and, when $l=k$, edge-disjoint tree decompositions.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience The purpose of this survey is to present recent results concerning concentration properties of extremal parameters of random discrete structures. A main emphasis is placed on the height and maximum degree of several kinds of random trees. We also provide exponential tail estimates for the height distribution of scale-free trees.


Sign in / Sign up

Export Citation Format

Share Document