scholarly journals Counting Hamilton cycles in Dirac hypergraphs

Author(s):  
Stefan Glock ◽  
Stephen Gould ◽  
Felix Joos ◽  
Daniela Kühn ◽  
Deryk Osthus

Abstract A tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic ordering of the vertices of G such that every set of k consecutive vertices in the ordering forms an edge. Rödl, Ruciński and Szemerédi proved that for $k\ge 3$ , every k-graph on n vertices with minimum codegree at least $n/2+o(n)$ contains a tight Hamilton cycle. We show that the number of tight Hamilton cycles in such k-graphs is ${\exp(n\ln n-\Theta(n))}$ . As a corollary, we obtain a similar estimate on the number of Hamilton ${\ell}$ -cycles in such k-graphs for all ${\ell\in\{0,\ldots,k-1\}}$ , which makes progress on a question of Ferber, Krivelevich and Sudakov.

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


10.37236/5025 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Asaf Ferber

We show how to adjust a very nice coupling argument due to McDiarmid in order to prove/reprove in a novel way results concerning Hamilton cycles in various models of random graph and hypergraphs. In particular, we firstly show that for $k\geq 3$, if $pn^{k-1}/\log n$ tends to infinity, then a random $k$-uniform hypergraph on $n$ vertices, with edge probability $p$, with high probability (w.h.p.) contains a loose Hamilton cycle, provided that $(k-1)|n$. This generalizes results of Frieze, Dudek and Frieze, and reproves a result of Dudek, Frieze, Loh and Speiss. Secondly, we show that there exists $K>0$ such for every $p\geq (K\log n)/n$ the following holds: Let $G_{n,p}$ be a random graph on $n$ vertices with edge probability $p$, and suppose that its edges are being colored with $n$ colors uniformly at random. Then, w.h.p. the resulting graph contains a Hamilton cycle with for which all the colors appear (a rainbow Hamilton cycle). Bal and Frieze proved the latter statement for graphs on an even number of vertices, where for odd $n$ their $p$ was $\omega((\log n)/n)$. Lastly, we show that for $p=(1+o(1))(\log n)/n$, if we randomly color the edge set of a random directed graph $D_{n,p}$ with $(1+o(1))n$ colors, then w.h.p. one can find a rainbow Hamilton cycle where all the edges are directed in the same way.


10.37236/2523 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze ◽  
Po-Shen Loh ◽  
Shelley Speiss

In the random $k$-uniform hypergraph $H^{(k)}_{n,p}$ of order $n$, each possible $k$-tuple appears independently with probability $p$. A loose Hamilton cycle is a cycle of order $n$ in which every pair of consecutive edges intersects in a single vertex. It was shown by Frieze that if $p\geq c(\log n)/n^2$ for some absolute constant $c>0$, then a.a.s. $H^{(3)}_{n,p}$ contains a loose Hamilton cycle, provided that $n$ is divisible by $4$. Subsequently,  Dudek and Frieze extended this result for any uniformity $k\ge 4$, proving that if $p\gg (\log n)/n^{k-1}$, then $H^{(k)}_{n,p}$ contains a loose Hamilton cycle, provided that $n$ is divisible by $2(k-1)$. In this paper, we improve the divisibility requirement and show that in the above results it is enough to assume that $n$ is a multiple of $k-1$, which is best possible.


Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .


10.37236/7274 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Andrzej Dudek ◽  
Sean English ◽  
Alan Frieze

Let $H_{n,p,r}^{(k)}$ denote a randomly colored random hypergraph, constructed on the vertex set $[n]$ by taking each $k$-tuple independently with probability $p$, and then independently coloring it with a random color from the set $[r]$. Let $H$ be a $k$-uniform hypergraph of order $n$. An $\ell$-Hamilton cycle is a spanning subhypergraph $C$ of $H$ with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.In this note we study the existence of rainbow $\ell$-Hamilton cycles (that is every edge receives a different color) in $H_{n,p,r}^{(k)}$. We mainly focus on the most restrictive case when $r = n/(k-\ell)$. In particular, we show that for the so called tight Hamilton cycles ($\ell=k-1$) $p = e^2/n$ is the sharp threshold for the existence of a rainbow tight Hamilton cycle in $H_{n,p,n}^{(k)}$ for each $k\ge 4$.


10.37236/2055 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze ◽  
Andrzej Ruciński

Let $K_n^{(k)}$ be the complete $k$-uniform hypergraph, $k\ge3$, and let $\ell$ be an integer such that $1\le \ell\le k-1$ and $k-\ell$ divides $n$. An $\ell$-overlapping Hamilton cycle in $K_n^{(k)}$ is a spanning subhypergraph $C$ of  $K_n^{(k)}$  with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.We show that, for some constant $c=c(k,\ell)$ and sufficiently large $n$, for every coloring (partition) of the edges of $K_n^{(k)}$ which uses arbitrarily many colors but no color appears more than $cn^{k-\ell}$ times, there exists a rainbow $\ell$-overlapping Hamilton cycle $C$, that is every edge of $C$ receives a different color. We also prove that, for some constant $c'=c'(k,\ell)$ and sufficiently large $n$, for every coloring of the edges of $K_n^{(k)}$ in which the maximum degree of the subhypergraph induced by any single color is bounded by $c'n^{k-\ell}$,  there exists a properly colored $\ell$-overlapping Hamilton cycle $C$, that is every two adjacent edges receive different colors. For $\ell=1$, both results are (trivially) best possible up to the constants. It is an open question if our results are also optimal for $2\le\ell\le k-1$.The proofs  rely on a version of the Lovász Local Lemma and incorporate some ideas from Albert, Frieze, and Reed.


10.37236/535 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze

In the random $k$-uniform hypergraph $H_{n,p;k}$ of order $n$ each possible $k$-tuple appears independently with probability $p$. A loose Hamilton cycle is a cycle of order $n$ in which every pair of adjacent edges intersects in a single vertex. We prove that if $p n^{k-1}/\log n$ tends to infinity with $n$ then $$\lim_{\substack{n\to \infty\\ 2(k-1) |n}}\Pr(H_{n,p;k}\text{ contains a loose Hamilton cycle})=1.$$ This is asymptotically best possible.


2017 ◽  
Vol 26 (6) ◽  
pp. 839-849
Author(s):  
ASAF FERBER ◽  
KYLE LUH ◽  
DANIEL MONTEALEGRE ◽  
OANH NGUYEN

A subsetCof edges in ak-uniform hypergraphHis aloose Hamilton cycleifCcovers all the vertices ofHand there exists a cyclic ordering of these vertices such that the edges inCare segments of that order and such that every two consecutive edges share exactly one vertex. The binomial randomk-uniform hypergraphHkn,phas vertex set [n] and an edge setEobtained by adding eachk-tuplee∈ ($\binom{[n]}{k}$) toEwith probabilityp, independently at random.Here we consider the problem of finding edge-disjoint loose Hamilton cycles covering all buto(|E|) edges, referred to as thepacking problem. While it is known that the threshold probability of the appearance of a loose Hamilton cycle inHkn,pis$p=\Theta\biggl(\frac{\log n}{n^{k-1}}\biggr),$the best known bounds for the packing problem are aroundp= polylog(n)/n. Here we make substantial progress and prove the following asymptotically (up to a polylog(n) factor) best possible result: forp≥ logCn/nk−1, a randomk-uniform hypergraphHkn,pwith high probability contains$N:=(1-o(1))\frac{\binom{n}{k}p}{n/(k-1)}$edge-disjoint loose Hamilton cycles.Our proof utilizes and modifies the idea of ‘online sprinkling’ recently introduced by Vu and the first author.


2020 ◽  
Vol 29 (6) ◽  
pp. 886-899
Author(s):  
Anita Liebenau ◽  
Yanitsa Pehova

AbstractA diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.


2015 ◽  
Vol 07 (03) ◽  
pp. 1550034
Author(s):  
T. Govindan ◽  
A. Muthusamy

Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G is Hamilton cycle decomposable. In this paper, we prove that, for any k > 5, there exists a directed Hamilton cycle decomposable 2-diregular digraph D of order 2k such that L(D) is not directed Hamilton cycle decomposable.


Sign in / Sign up

Export Citation Format

Share Document