scholarly journals Characterization of Lattices Induced by (extended) Chip Firing Games

2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
Clémence Magnien ◽  
Ha Duong Phan ◽  
Laurent Vuillon

International audience The Chip Firing Game (CFG) is a discrete dynamical model used in physics, computer science and economics. It is known that the set of configurationsreachable from an initial configuration (this set is called the \textitconfiguration space) can be ordered as a lattice. We first present a structural result about this model, which allows us to introduce some useful tools for describing those lattices. Then we establish that the class of lattices that are the configuration space of a CFG is strictly between the class of distributive lattices and the class of upper locally distributive (or ULD) lattices. Finally we propose an extension of the model, the \textitcoloured Chip Firing Game, which generates exactly the class of ULD lattices.

2009 ◽  
Vol 18 (5) ◽  
pp. 707-724 ◽  
Author(s):  
STEFAN FELSNER ◽  
KOLJA B. KNAUER

We provide a characterization of upper locally distributive lattices (ULD-lattices) in terms of edge colourings of their cover graphs. In many instances where a set of combinatorial objects carries the order structure of a lattice, this characterization yields a slick proof of distributivity or UL-distributivity. This is exemplified by proving a distributive lattice structure on Δ-bonds with invariant circular flow-difference. This instance generalizes several previously studied lattice structures, in particular,c-orientations (Propp), α-orientations of planar graphs (Felsner, resp. de Mendez) and planar flows (Khuller, Naor and Klein). The characterization also applies to other instances,e.g., to chip-firing games.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Ziv Scully ◽  
Tian-Yi Jiang ◽  
Yan Zhang

International audience The $\textit{parallel chip-firing game}$ is an automaton on graphs in which vertices "fire'' chips to their neighbors. This simple model, analogous to sandpiles forming and collapsing, contains much emergent complexity and has connections to different areas of mathematics including self-organized criticality and the study of the sandpile group. In this work, we study $\textit{firing sequences}$, which describe each vertex's interaction with its neighbors in this game. Our main contribution is a complete characterization of the periodic firing sequences that can occur in a game, which have a surprisingly simple combinatorial description. We also obtain other results about local behavior of the game after introducing the concept of $\textit{motors}$. Le $\textit{parallel chip-firing game}$, c’est une automate sur les graphiques, dans lequel les sommets “tirent” des jetons à leurs voisins. Ce modèle simple, semblable aux tas de sable qui forment et s’affaissent, contient beaucoup de complexité émergente et a des connections avec différents domaines de mathématiques, incluant le $\textit{self-organized criticality}$ et l’étude du $\textit{sandpile group}$. Dans ce projet, on étudie les $\textit{firing sequences}$, qui décrivent les interactions de chaque sommet avec ses voisins dans le jeu. Notre contribution principale est une caractérisation complète des séquences de tir qui peuvent arriver dans une jeu, qui ont une description combinatoire assez simple. Nous obtenonsaussi d'autres résultats sur le conduite locale du jeu après l’introduction du concept des $\textit{motors}$.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
Matthieu Latapy

International audience In this paper, we use a simple discrete dynamical model to study partitions of integers into powers of another integer. We extend and generalize some known results about their enumeration and counting, and we give new structural results. In particular, we show that the set of these partitions can be ordered in a natural way which gives the distributive lattice structure to this set. We also give a tree structure which allow efficient and simple enumeration of the partitions of an integer.


1971 ◽  
Vol 23 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Raymond Balbes

For a distributive lattice L, let denote the poset of all prime ideals of L together with ∅ and L. This paper is concerned with the following type of problem. Given a class of distributive lattices, characterize all posets P for which for some . Such a poset P will be called representable over. For example, if is the class of all relatively complemented distributive lattices, then P is representable over if and only if P is a totally unordered poset with 0, 1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult.


Yap Hian Poh. Postulational study of an axiom system of Boolean algebra. Majallah Tahunan 'Ilmu Pasti—Shu Hsüeh Nien K'an—Bulletin of Mathematical Society of Nanyang University (1960), pp. 94–110. - R. M. Dicker. A set of independent axioms for Boolean algebra. Proceedings of the London Mathematical Society, ser. 3 vol. 13 (1963), pp. 20–30. - P. J. van Albada. A self-dual system of axioms for Boolean algebra. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, series A vol. 67 (1964), pp. 377–381; also Indagationes mathematicae, vol. 26 (1964), pp. 377–381. - Antonio Diego and Alberto Suárez. Two sets of axioms for Boolean algebras. Portugaliae mathematica, vol. 23 nos. 3–4 (for 1964, pub. 1965), pp. 139–145. (Reprinted from Notas de lógica matemática no. 16, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca 1964, 13 pp.) - P. J. van Albada. Axiomatique des algèbres de Boole. Bulletin de la Société Mathématique de Belgique, vol. 18 (1966), pp. 260–272. - Lawrence J. Dickson. A short axiomatic system for Boolean algebra. Pi Mu Epsilon journal, vol. 4 no. 6 (1967), pp. 253–257. - Leroy J. Dickey. A shorter axiomatic system for Boolean algebra. Pi Mu Epsilon journal, vol. 4 no. 8 (1968), p. 336. - Chinthayamma . Independent postulate sets for Boolean algebra. Pi Mu Epsilon journal, vol. 4 no. 9 (1968), pp. 378–379. - Kiyoshi Iséki. A simple characterization of Boolean rings. Proceedings of the Japan Academy, vol. 44 (1968), pp. 923–924. - Sakiko Ôhashi. On definitions of Boolean rings and distributive lattices. Proceedings of the Japan Academy, vol. 44 (1968), pp. 1015–1017.

1973 ◽  
Vol 38 (4) ◽  
pp. 658-660
Author(s):  
Donald H. Potts

2014 ◽  
Vol 25 (06) ◽  
pp. 679-696 ◽  
Author(s):  
PEDRO GARCÍA ◽  
DAMIÁN LÓPEZ ◽  
MANUEL VÁZQUEZ DE PARGA

Minimization of deterministic finite automata is a classic problem in Computer Science which is still studied nowadays. In this paper, we relate the different split-minimization methods proposed to date, or to be proposed, and the algorithm due to Brzozowski which has been usually set aside in any classification of DFA minimization algorithms. In our work, we first propose a polynomial minimization method derived from a paper by Champarnaud et al. We also show how the consideration of some efficiency improvements on this algorithm lead to obtain an algorithm similar to Hopcroft's classic algorithm. The results obtained lead us to propose a characterization of the set of possible splitters.


2018 ◽  
Vol 28 (3) ◽  
pp. 483-492
Author(s):  
Ignacy Duleba ◽  
Iwona Karcz-Duleba ◽  
Arkadiusz Mielczarek

Abstract A repeatable inverse kinematic task in robot manipulators consists in finding a loop (cyclic trajectory) in a configuration space, which corresponds to a given loop in a task space. In the robotic literature, an entry configuration to the trajectory is fixed and given by a user. In this paper the assumption is released and a new, indirect method is introduced to find entry configurations generating short trajectories. The method avoids a computationally expensive evaluation of (infinite) many entry configurations for redundant manipulators (for each of them, repeatable inverse kinematics should be run). Some fast-to-compute functions are proposed to evaluate entry configurations and their correlations with resulting lengths of trajectories are computed. It appears that only an original function, based on characteristics of a manipulability subellipsoid, properly distinguishes entry configurations that generate short trajectories. This function can be used either to choose one from a few possible entry configurations or as an optimized function to compute the best initial configuration.


2007 ◽  
Vol Vol. 9 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Ludger Rüschendorf ◽  
Eva-Maria Schopp

Analysis of Algorithms International audience Exponential bounds and tail estimates are derived for additive random recursive sequences, which typically arise as functionals of recursive structures, of random trees or in recursive algorithms. In particular they arise as parameters of divide and conquer type algorithms. We derive tail bounds from estimates of the Laplace transforms and of the moment sequences. For the proof we use some classical exponential bounds and some variants of the induction method. The paper generalizes results of Rösler (% \citeyearNPRoesler:91, % \citeyearNPRoesler:92) and % \citeNNeininger:05 on subgaussian tails to more general classes of additive random recursive sequences. It also gives sufficient conditions for tail bounds of the form \exp(-a t^p) which are based on a characterization of \citeNKasahara:78.


Sign in / Sign up

Export Citation Format

Share Document