scholarly journals Firing Patterns in the Parallel Chip-Firing Game

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Ziv Scully ◽  
Tian-Yi Jiang ◽  
Yan Zhang

International audience The $\textit{parallel chip-firing game}$ is an automaton on graphs in which vertices "fire'' chips to their neighbors. This simple model, analogous to sandpiles forming and collapsing, contains much emergent complexity and has connections to different areas of mathematics including self-organized criticality and the study of the sandpile group. In this work, we study $\textit{firing sequences}$, which describe each vertex's interaction with its neighbors in this game. Our main contribution is a complete characterization of the periodic firing sequences that can occur in a game, which have a surprisingly simple combinatorial description. We also obtain other results about local behavior of the game after introducing the concept of $\textit{motors}$. Le $\textit{parallel chip-firing game}$, c’est une automate sur les graphiques, dans lequel les sommets “tirent” des jetons à leurs voisins. Ce modèle simple, semblable aux tas de sable qui forment et s’affaissent, contient beaucoup de complexité émergente et a des connections avec différents domaines de mathématiques, incluant le $\textit{self-organized criticality}$ et l’étude du $\textit{sandpile group}$. Dans ce projet, on étudie les $\textit{firing sequences}$, qui décrivent les interactions de chaque sommet avec ses voisins dans le jeu. Notre contribution principale est une caractérisation complète des séquences de tir qui peuvent arriver dans une jeu, qui ont une description combinatoire assez simple. Nous obtenonsaussi d'autres résultats sur le conduite locale du jeu après l’introduction du concept des $\textit{motors}$.

Author(s):  
D. N. P. Murthy ◽  
E. Asgharizadeh

When it is not economical to carry out maintenance in-house, out-sourcing to an external agent is an alternate viable option. In this paper, we study a simple maintenance service contract involving a single agent (providing the maintenance service) and a single customer (owner of the equipment and recipient of the maintenance service). We develop a simple model to obtain the optimal strategies for both the customer and the agent. We give a complete characterization of the strategies along with some sensitivity analysis and discuss some extensions.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Itamar Landau ◽  
Lionel Levine ◽  
Yuval Peres

International audience The sandpile group of a graph $G$ is an abelian group whose order is the number of spanning trees of $G$. We find the decomposition of the sandpile group into cyclic subgroups when $G$ is a regular tree with the leaves are collapsed to a single vertex. This result can be used to understand the behavior of the rotor-router model, a deterministic analogue of random walk studied first by physicists and more recently rediscovered by combinatorialists. Several years ago, Jim Propp simulated a simple process called rotor-router aggregation and found that it produces a near perfect disk in the integer lattice $\mathbb{Z}^2$. We prove that this shape is close to circular, although it remains a challenge to explain the near perfect circularity produced by simulations. In the regular tree, we use the sandpile group to prove that rotor-router aggregation started from an acyclic initial condition yields a perfect ball.


1994 ◽  
Vol 367 ◽  
Author(s):  
S. Zapperi ◽  
A. Vespignanit ◽  
L. Pietronero

AbstractWe have introduced a new renormalization group approach that allows us to describe the critical stationary state of sandpile models (Phys. Rev. Lett. 72, 1690 (1994)). We define a characterization of the phase space in order to study the evolution of the dynamics under a change of scale. We obtain a non trivial actractive fixed point for the parameters of the model that clarifys the self organized critical nature of these models. We are able to compute the values of the critical exponents and the results are in good agreement with computer simulations. The method can be naturally extended to several other problems with non equilibrium stationary state.


2019 ◽  
Vol 116 (8) ◽  
pp. 2821-2830 ◽  
Author(s):  
Moritz Lang ◽  
Mikhail Shkolnikov

The abelian sandpile is a cellular automaton which serves as the archetypical model to study self-organized criticality, a phenomenon occurring in various biological, physical, and social processes. Its recurrent configurations form an abelian group, whose identity is a fractal composed of self-similar patches. Here, we analyze the evolution of the sandpile identity under harmonic fields of different orders. We show that this evolution corresponds to periodic cycles through the abelian group characterized by the smooth transformation and apparent conservation of the patches constituting the identity. The dynamics induced by second- and third-order harmonics resemble smooth stretchings and translations, respectively, while the ones induced by fourth-order harmonics resemble magnifications and rotations. Based on an extensive analysis of these sandpile dynamics on domains of different size, we conjecture the existence of several scaling limits for infinite domains. Furthermore, we show that the space of harmonic functions provides a set of universal coordinates identifying configurations between different domains, which directly implies that the sandpile group admits a natural renormalization. Finally, we show that the harmonic fields can be induced by simple Markov processes and that the corresponding stochastic dynamics show remarkable robustness. Our results suggest that harmonic fields might split the sandpile group into subsets showing different critical coefficients and that it might be possible to extend the fractal structure of the identity beyond the boundaries of its domain.


2011 ◽  
Vol DMTCS Proceedings vol. AP,... (Proceedings) ◽  
Author(s):  
Kévin Perrot ◽  
Thi Ha Duong Phan ◽  
Trung Van Pham

International audience Sand Pile Models are discrete dynamical systems emphasizing the phenomenon of $\textit{Self-Organized Criticality}$. From a configuration composed of a finite number of stacked grains, we apply on every possible positions (in parallel) two grain moving transition rules. The transition rules permit one grain to fall to its right or left (symmetric) neighboring column if the difference of height between those columns is larger than 2. The model is nondeterministic and grains always fall downward. We propose a study of the set of fixed points reachable in the Parallel Symmetric Sand Pile Model (PSSPM). Using a comparison with the Symmetric Sand Pile Model (SSPM) on which rules are applied once at each iteration, we get a continuity property. This property states that within PSSPM we can't reach every fixed points of SSPM, but a continuous subset according to the lexicographic order. Moreover we define a successor relation to browse exhaustively the sets of fixed points of those models.


2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
Clémence Magnien ◽  
Ha Duong Phan ◽  
Laurent Vuillon

International audience The Chip Firing Game (CFG) is a discrete dynamical model used in physics, computer science and economics. It is known that the set of configurationsreachable from an initial configuration (this set is called the \textitconfiguration space) can be ordered as a lattice. We first present a structural result about this model, which allows us to introduce some useful tools for describing those lattices. Then we establish that the class of lattices that are the configuration space of a CFG is strictly between the class of distributive lattices and the class of upper locally distributive (or ULD) lattices. Finally we propose an extension of the model, the \textitcoloured Chip Firing Game, which generates exactly the class of ULD lattices.


2019 ◽  
Vol 42 ◽  
Author(s):  
Lucio Tonello ◽  
Luca Giacobbi ◽  
Alberto Pettenon ◽  
Alessandro Scuotto ◽  
Massimo Cocchi ◽  
...  

AbstractAutism spectrum disorder (ASD) subjects can present temporary behaviors of acute agitation and aggressiveness, named problem behaviors. They have been shown to be consistent with the self-organized criticality (SOC), a model wherein occasionally occurring “catastrophic events” are necessary in order to maintain a self-organized “critical equilibrium.” The SOC can represent the psychopathology network structures and additionally suggests that they can be considered as self-organized systems.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Sign in / Sign up

Export Citation Format

Share Document