scholarly journals Coloring Rings in Species

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jacob White

International audience We present a generalization of the chromatic polynomial, and chromatic symmetric function, arising in the study of combinatorial species. These invariants are defined for modules over lattice rings in species. The primary examples are graphs and set partitions. For these new invariants, we present analogues of results regarding stable partitions, the bond lattice, the deletion-contraction recurrence, and the subset expansion formula. We also present two detailed examples, one related to enumerating subgraphs by their blocks, and a second example related to enumerating subgraphs of a directed graph by their strongly connected components.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Elias Dahlhaus ◽  
Jens Gustedt ◽  
Ross M. Mcconnell

Special issue: Graph Decompositions International audience A complementation operation on a vertex of a digraph changes all outgoing arcs into non-arcs, and outgoing non-arcs into arcs. This defines an equivalence relation where two digraphs are equivalent if one can be obtained from the other by a sequence of such operations. We show that given an adjacency-list representation of a digraph G, many fundamental graph algorithms can be carried out on any member G' of G's equivalence class in O(n+m) time, where m is the number of arcs in G, not the number of arcs in G' . This may have advantages when G' is much larger than G. We use this to generalize to digraphs a simple O(n + m log n) algorithm of McConnell and Spinrad for finding the modular decomposition of undirected graphs. A key step is finding the strongly-connected components of a digraph F in G's equivalence class, where F may have ~(m log n) arcs.


2021 ◽  
Vol 1 ◽  
pp. 122-133
Author(s):  
Alexey V. Oletsky ◽  
◽  
Mikhail F. Makhno ◽  
◽  

A problem of automated assessing of students’ study projects is regarded. A heuristic algorithm based on fuzzy estimating of projects and on pairwise comparisons among them is proposed. For improving adequacy and naturalness of grades, an approach based on introducing a parameter named relaxation parameter was suggested in the paper. This enables to reduce the spread between maximum and minimum values of projects in comparison with the one in the standard scale suggested by T. Saati. Reasonable values of this parameter were selected experimentally. For estimating the best alternative, a center of mass of a fuzzy max-min composition should be calculated. An estimation algorithm for a case of non-transitive preferences based on getting strongly connected components and on pairwise comparisons between them is also suggested. In this case, relaxation parameters should be chosen separately for each subtask. So the combined technique of evaluating alternatives proposed in the paper depends of the following parameters: relaxation parameters for pairwise comparisons matrices within each strongly connected components; relaxation parameter for pairwise comparisons matrices among strongly connected components; membership function for describing the best alternative.


10.37236/518 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Brandon Humpert

The chromatic symmetric function $X_G$ of a graph $G$ was introduced by Stanley. In this paper we introduce a quasisymmetric generalization $X^k_G$ called the $k$-chromatic quasisymmetric function of $G$ and show that it is positive in the fundamental basis for the quasisymmetric functions. Following the specialization of $X_G$ to $\chi_G(\lambda)$, the chromatic polynomial, we also define a generalization $\chi^k_G(\lambda)$ and show that evaluations of this polynomial for negative values generalize a theorem of Stanley relating acyclic orientations to the chromatic polynomial.


Sign in / Sign up

Export Citation Format

Share Document