scholarly journals Some Algebraic Aspects of Morse Code Sequences

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Johann Cigler

International audience Morse code sequences are very useful to give combinatorial interpretations of various properties of Fibonacci numbers. In this note we study some algebraic and combinatorial aspects of Morse code sequences and obtain several q-analogues of Fibonacci numbers and Fibonacci polynomials and their generalizations.

Author(s):  
Feng Qi ◽  
Jing-Lin Wang ◽  
Bai-Ni Guo

In the paper, the authors nd a new closed expression for the Fibonacci polynomials and, consequently, for the Fibonacci numbers, in terms of a tridiagonal determinant.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 334 ◽  
Author(s):  
Yuankui Ma ◽  
Wenpeng Zhang

The aim of this paper is to research the structural properties of the Fibonacci polynomials and Fibonacci numbers and obtain some identities. To achieve this purpose, we first introduce a new second-order nonlinear recursive sequence. Then, we obtain our main results by using this new sequence, the properties of the power series, and the combinatorial methods.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Engin Özkan ◽  
Nur Şeyma Yilmaz ◽  
Andrzej Włoch

AbstractIn this paper, we study a generalization of Narayana’s numbers and Padovan’s numbers. This generalization also includes a sequence whose elements are Fibonacci numbers repeated three times. We give combinatorial interpretations and a graph interpretation of these numbers. In addition, we examine matrix generators and determine connections with Pascal’s triangle.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Daniela Battaglino ◽  
Jean-Marc Fédou ◽  
Simone Rinaldi ◽  
Samanta Socci

International audience A convex polyomino is $k$-$\textit{convex}$ if every pair of its cells can be connected by means of a $\textit{monotone path}$, internal to the polyomino, and having at most $k$ changes of direction. The number $k$-convex polyominoes of given semi-perimeter has been determined only for small values of $k$, precisely $k=1,2$. In this paper we consider the problem of enumerating a subclass of $k$-convex polyominoes, precisely the $k$-$\textit{convex parallelogram polyominoes}$ (briefly, $k$-$\textit{parallelogram polyominoes}$). For each $k \geq 1$, we give a recursive decomposition for the class of $k$-parallelogram polyominoes, and then use it to obtain the generating function of the class, which turns out to be a rational function. We are then able to express such a generating function in terms of the $\textit{Fibonacci polynomials}$. Un polyomino convexe est dit $k$-$\textit{convexe}$ lorsqu’on peut relier tout couple de cellules par un chemin monotone ayant au plus $k$ changements de direction. Le nombre de polyominos $k$-convexes n’est connu que pour les petites valeurs de $k = 1,2$. Dans cet article, nous énumérons la sous-classe des polyominos $k$-convexes qui sont également parallélogramme, que nous appelons $k$-$\textit{parallélogrammes}$. Nous donnons une décomposition récursive de la classe des polyominos $k$-parallélogrammes pour chaque $k$, et en déduisons la fonction génératrice, rationnelle, selon le demi-périmètre. Nous donnons enfin une expression de cette fonction génératrice en termes des $\textit{polynômes de Fibonacci}$.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Justin Lambright ◽  
Mark Skandera

International audience The well-known R-polynomials in ℤ[q], which appear in Hecke algebra computations, are closely related to certain modified R-polynomials in ℕ[q] whose coefficients have simple combinatorial interpretations. We generalize this second family of polynomials, providing combinatorial interpretations for expressions arising in a much broader class of computations. In particular, we extend results of Brenti, Deodhar, and Dyer to new settings which include parabolic Hecke algebra modules and the quantum polynomial ring. Les bien connues polynômes-R en ℤ[q], qui apparaissent dans les calcules d'algébre de Hecke, sont relationés à certaines polynômes-R modifiés en ℕ[q], dont les coefficients ont simples interprétations combinatoires. Nous généralisons cette deuxième famille de polynômes, fournissant des interprétations combinatoires pour les expressions qui se posent dans une catégorie beaucoup plus vaste de calculs. En particulier, nous étendons des résultats de Brenti, Deodhar, et Dyer à des situations nouvelles, qui comprennent modules paraboliques pour l'algébre de Hecke, et l'anneau des polynômes quantiques.


2018 ◽  
Vol 68 (4) ◽  
pp. 699-712
Author(s):  
José L. Ramírez ◽  
Mark Shattuck

Abstract The symmetric algorithm is a variant of the well-known Euler-Seidel method which has proven useful in the study of linearly recurrent sequences. In this paper, we introduce a multivariate generalization of the symmetric algorithm which reduces to it when all parameters are unity. We derive a general explicit formula via a combinatorial argument and also an expression for the row generating function. Several applications of our algorithm to the q-Fibonacci and q-hyper-Fibonacci numbers are discussed. Among our results is an apparently new recursive formula for the Carlitz Fibonacci polynomials. Finally, a (p, q)-analogue of the algorithm is introduced and an explicit formula for it in terms of the (p, q)-binomial coefficient is found.


Filomat ◽  
2021 ◽  
Vol 35 (3) ◽  
pp. 1001-1013
Author(s):  
Souhila Boughaba ◽  
Ali Boussayoud ◽  
Serkan Araci ◽  
Mohamed Kerada ◽  
Mehmet Acikgoz

In this paper, we derive some new symmetric properties of k-Fibonacci numbers by making use of symmetrizing operator. We also give some new generating functions for the products of some special numbers such as k-Fibonacci numbers, k-Pell numbers, Jacobsthal numbers, Fibonacci polynomials and Chebyshev polynomials.


2018 ◽  
Vol 24 (3) ◽  
pp. 47-55 ◽  
Author(s):  
Engin Özkan ◽  
◽  
Merve Taştan ◽  
Ali Aydoğdu ◽  
◽  
...  

2010 ◽  
Vol DMTCS Proceedings vol. AL,... (Proceedings) ◽  
Author(s):  
Henryk Fuks

International audience We present a method of solving of the probabilistic initial value problem for cellular automata (CA) using CA rule 172 as an example. For a disordered initial condition on an infinite lattice, we derive exact expressions for the density of ones at arbitrary time step. In order to do this, we analyze topological structure of preimage trees of finite strings of length 3. Level sets of these trees can be enumerated directly using classical combinatorial methods, yielding expressions for the number of $n$-step preimages of all strings of length 3, and, subsequently, probabilities of occurrence of these strings in a configuration obtained from the initial one after $n$ iterations of rule 172. The density of ones can be expressed in terms of Fibonacci numbers, while expressions for probabilities of other strings involve Lucas numbers. Applicability of this method to other CA rules is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document