scholarly journals Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 334 ◽  
Author(s):  
Yuankui Ma ◽  
Wenpeng Zhang

The aim of this paper is to research the structural properties of the Fibonacci polynomials and Fibonacci numbers and obtain some identities. To achieve this purpose, we first introduce a new second-order nonlinear recursive sequence. Then, we obtain our main results by using this new sequence, the properties of the power series, and the combinatorial methods.

Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1141 ◽  
Author(s):  
Yuanyuan Meng

In this paper, a second-order nonlinear recursive sequence M ( h , i ) is studied. By using this sequence, the properties of the power series, and the combinatorial methods, some interesting symmetry identities of the structural properties of balancing numbers and balancing polynomials are deduced.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 300 ◽  
Author(s):  
Guohui Chen ◽  
Li Chen

In this paper, we first introduce a new second-order non-linear recursive polynomials U h , i ( x ) , and then use these recursive polynomials, the properties of the power series and the combinatorial methods to prove some identities involving the Fubini polynomials, Euler polynomials and Euler numbers.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1496 ◽  
Author(s):  
Yanyan Liu ◽  
Xingxing Lv

The main purpose of this paper is using the combinatorial method, the properties of the power series and characteristic roots to study the computational problem of the symmetric sums of a certain second-order linear recurrence sequences, and obtain some new and interesting identities. These results not only improve on some of the existing results, but are also simpler and more beautiful. Of course, these identities profoundly reveal the regularity of the second-order linear recursive sequence, which can greatly facilitate the calculation of the symmetric sums of the sequences in practice.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 244 ◽  
Author(s):  
Yixue Zhang ◽  
Zhuoyu Chen

In this paper, firstly, we introduced a second order non-linear recursive sequence, then we use this sequence and the combinatorial methods to perform a deep study on the computational problem concerning one kind sums, which includes the Chebyshev polynomials. This makes it possible to simplify a class of complex computations involving the second type Chebyshev polynomials into a very simple problem. Finally, we give a new and interesting identity for it.


Author(s):  
Yuksel Soykan

In this paper, closed forms of the sum formulas Σn k=0 kW3 k and Σn k=1 kW3-k for the cubes of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery. Our work generalize second order recurrence relations.


Author(s):  
Olumide O. Olaiya ◽  
Rasaq A. Azeez ◽  
Mark I. Modebei

This study is therefore aimed at developing classes of efficient numerical integration schemes, for direct solution of second-order Partial Differential Equations (PDEs) with the aid of the method of lines. The power series polynomials were used as basis functions for trial solutions in the derivation of the proposed schemes via collocation and interpolation techniques at some appropriately chosen grid and off-grid points the derivedschemes are consistent, zero-stable and convergent. the proposed methods perform better in terms of accuracy than some existing methods in the literature.


Author(s):  
Feng Qi ◽  
Jing-Lin Wang ◽  
Bai-Ni Guo

In the paper, the authors nd a new closed expression for the Fibonacci polynomials and, consequently, for the Fibonacci numbers, in terms of a tridiagonal determinant.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 250 ◽  
Author(s):  
Shahin Homaeigohar ◽  
Niharika Krishna Botcha ◽  
Eman. S. Zarie ◽  
Mady Elbahri

Given the exponentially expanding water pollution causing water scarcity, there is an urgent need for operative nanotechnological systems that can purify water, with insignificant energy consumption, and rapidly. Here, we introduce a nanocomposite system based on TiO2 nanoparticles (NPs) and PES nanofibers (NFs) that can adsorb and then photodecompose organic water pollutants such as dye molecules. We evaluate pros and cons of this system with respect to its purification efficiency and structural properties that can be impacted by the photocatalytic activity of the nanofillers. While the material is superhydrophilic and able to remove 95% methylene blue (MB) from water via adsorption/photodecomposition, its thermomechanical properties decline upon UV irradiation. However, these properties still remain at the level of the neat NFs. The removal behavior is modeled by the first- and second-order kinetic models from the kinetic point of view. The nanocomposite NFs’ removal behavior complies much better with the second-order kinetic model. Overall, such feedbacks implied that the nanocomposite can be effectively applied for water treatment and the structural properties are still as reliable as those of the neat counterpart.


Sign in / Sign up

Export Citation Format

Share Document