scholarly journals A non-partitionable Cohen–Macaulay simplicial complex

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Art M. Duval ◽  
Bennet Goeckner ◽  
Caroline J. Klivans ◽  
Jeremy Martin

International audience A long-standing conjecture of Stanley states that every Cohen–Macaulay simplicial complex is partition- able. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.

2015 ◽  
Vol 58 (2) ◽  
pp. 393-401
Author(s):  
Zhongming Tang

AbstractLet S = K[x1 , . . . , xn] be the polynomial ring in n-variables over a ûeld K and I a monomial ideal of S. According to one standard primary decomposition of I, we get a Stanley decomposition of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate the Stanley depth of S/I. It is proved that sdepthS(S/I) ≤ sizeS(I). When I is squarefree and bigsizeS(I) ≤ 2, the Stanley conjecture holds for S/I, i.e., sdepthS(S/I) ≥ depthS(S/I).


2011 ◽  
Vol 48 (2) ◽  
pp. 220-226
Author(s):  
Azeem Haider ◽  
Sardar Khan

Let S = K[x1,…,xn] be a polynomial ring in n variables over a field K. Stanley’s conjecture holds for the modules I and S/I, when I ⊂ S is a critical monomial ideal. We calculate the Stanley depth of S/I when I is a canonical critical monomial ideal. For non-critical monomial ideals we show the existence of a Stanley ideal with the same depth and Hilbert function.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


10.37236/6783 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Mitchel T. Keller ◽  
Stephen J. Young

We develop combinatorial tools to study the relationship between the Stanley depth of a monomial ideal $I$ and the Stanley depth of its compliment, $S/I$. Using these results we are able to prove that if $S$ is a polynomial ring with at most 5 indeterminates and $I$ is a square-free monomial ideal, then the Stanley depth of $S/I$ is strictly larger than the Stanley depth of $I$. Using a computer search, we are able to extend this strict inequality up to polynomial rings with at most 7 indeterminates. This partially answers questions asked by Propescu and Qureshi as well as Herzog.


2017 ◽  
Vol 120 (1) ◽  
pp. 5 ◽  
Author(s):  
S. A. Seyed Fakhari

The aim of this paper is to study the Stanley depth of symbolic powers of a squarefree monomial ideal. We prove that for every squarefree monomial ideal $I$ and every pair of integers $k, s\geq 1$, the inequalities $\mathrm{sdepth} (S/I^{(ks)}) \leq \mathrm{sdepth} (S/I^{(s)})$ and $\mathrm{sdepth}(I^{(ks)}) \leq \mathrm{sdepth} (I^{(s)})$ hold. If moreover $I$ is unmixed of height $d$, then we show that for every integer $k\geq1$, $\mathrm{sdepth}(I^{(k+d)})\leq \mathrm{sdepth}(I^{{(k)}})$ and $\mathrm{sdepth}(S/I^{(k+d)})\leq \mathrm{sdepth}(S/I^{{(k)}})$. Finally, we consider the limit behavior of the Stanley depth of symbolic powers of a squarefree monomial ideal. We also introduce a method for comparing the Stanley depth of factors of monomial ideals.


2012 ◽  
Vol 140 (2) ◽  
pp. 493-504 ◽  
Author(s):  
Jürgen Herzog ◽  
Dorin Popescu ◽  
Marius Vladoiu
Keyword(s):  

2017 ◽  
Vol 59 (3) ◽  
pp. 705-715
Author(s):  
S. A. SEYED FAKHARI

AbstractLet $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.


2009 ◽  
Vol 322 (9) ◽  
pp. 3151-3169 ◽  
Author(s):  
Jürgen Herzog ◽  
Marius Vladoiu ◽  
Xinxian Zheng
Keyword(s):  

2001 ◽  
Vol 89 (1) ◽  
pp. 117 ◽  
Author(s):  
V Reiner ◽  
V Welker

We give an elementary description of the maps in the linear strand of the minimal free resolution of a square-free monomial ideal, that is, the Stanley-Reisner ideal associated to a simplicial complex $\Delta$. The description is in terms of the homology of the canonical Alexander dual complex $\Delta^*$. As applications we are able to prove for monomial ideals and $j=1$ a conjecture of J. Herzog giving lower bounds on the number of $i$-syzygies in the linear strand of $j^{th}$-syzygy modules show that the maps in the linear strand can be written using only $\pm 1$ coefficients if $\Delta^*$ is a pseudomanifold exhibit an example where multigraded maps in the linear strand cannot be written using only $\pm 1$ coefficients compute the entire resolution explicitly when $\Delta^*$ is the complex of independent sets of a matroid


2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
Sergei Bespamyatnikh

International audience A triangulation of a finite point set A in $\mathbb{R}^d$ is a geometric simplicial complex which covers the convex hull of $A$ and whose vertices are points of $A$. We study the graph of triangulations whose vertices represent the triangulations and whose edges represent geometric bistellar flips. The main result of this paper is that the graph of triangulations in three dimensions is connected when the points of $A$ are in convex position. We introduce a tree of triangulations and present an algorithm for enumerating triangulations in $O(log log n)$ time per triangulation.


Sign in / Sign up

Export Citation Format

Share Document