scholarly journals Matrix product and sum rule for Macdonald polynomials

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Luigi Cantini ◽  
Jan De Gier ◽  
Michael Wheeler

International audience We present a new, explicit sum formula for symmetric Macdonald polynomials Pλ and show that they can be written as a trace over a product of (infinite dimensional) matrices. These matrices satisfy the Zamolodchikov– Faddeev (ZF) algebra. We construct solutions of the ZF algebra from a rank-reduced version of the Yang–Baxter algebra. As a corollary, we find that the normalization of the stationary measure of the multi-species asymmetric exclusion process is a Macdonald polynomial with all variables set equal to one.

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Anatol N. Kirillov ◽  
Reiho Sakamoto

International audience We give an interpretation of the $t=1$ specialization of the modified Macdonald polynomial as a generating function of the energy statistics defined on the set of paths arising in the context of Box-Ball Systems (BBS-paths for short). We also introduce one parameter generalizations of the energy statistics on the set of BBS-paths which all, conjecturally, have the same distribution. Nous donnons une intérprétation de la spécialisation à $t=1$ du polynôme de Macdonald modifié comme fonction génératrice des statistiques d'énergie définies sur l'ensemble des chemins qui apparaissent dans la théorie des Systèmes BBS (BBS-chemins). Nous présentons également des généralisations à un paramètre de la statistique d'énergie sur les chemins BBS qui toutes, conjecturalement, ont la même distribution.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Adrien Boussicault ◽  
Jean-Gabriel Luque

International audience We prove that a $q$-deformation $\mathfrak{D}_k(\mathbb{X};q)$ of the powers of the discriminant is equal, up to a normalization, to a specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion of $\mathfrak{D}_k(\mathbb{X};q)$ on different bases of symmetric functions. In particular, we show that its expansion on the monomial basis can be explicitly described in terms of standard tableaux and we generalize a result of King-Toumazet-Wybourne about the expansion of the $q$-discriminant on the Schur basis. Nous montrons qu’une $q$-déformation $\mathfrak{D}_k(\mathbb{X};q)$ des puissances du discriminant est égale, à un coefficient de normalisation près, à un polynôme de Macdonald indexé par une partition escalier pour une certaine spécialisation des paramètres. Nous examinons les développements de $\mathfrak{D}_k(\mathbb{X};q)$ dans différentes bases de fonctions symétriques. En particulier, nous montrons que son écriture dans la base des fonctions monomiales peut être explicitement décrite en terme de tableaux standard et nous généralisons un résultat de King-Toumazet-Wybourne sur le développement du $q$-discriminant dans la base de Schur.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Austin Roberts

International audience This paper uses the theory of dual equivalence graphs to give explicit Schur expansions to several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified Hall-Littlewood polynomials indexed by any diagram $δ ⊂ \mathbb{Z} \times \mathbb{Z}$, written as $\widetilde H_δ (X;q,t)$ and $\widetilde P_δ (X;t)$, respectively. We then give an explicit Schur expansion of $\widetilde P_δ (X;t)$ as a sum over a subset of the Yamanouchi words, as opposed to the expansion using the charge statistic given in 1978 by Lascoux and Schüztenberger. We further define the symmetric function $R_γ ,δ (X)$ as a refinement of $\widetilde P_δ$ and similarly describe its Schur expansion. We then analysize $R_γ ,δ (X)$ to determine the leading term of its Schur expansion. To gain these results, we associate each Macdonald polynomial with a signed colored graph $\mathcal{H}_δ$ . In the case where a subgraph of $\mathcal{H}_δ$ is a dual equivalence graph, we provide the Schur expansion of its associated symmetric function, yielding several corollaries.


Sign in / Sign up

Export Citation Format

Share Document