scholarly journals A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm

2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Michal Koucký ◽  
Vojtěch Rödl ◽  
Navid Talebanfard

We show that for every $r \ge 2$ there exists $\epsilon_r > 0$ such that any $r$-uniform hypergraph with $m$ edges and maximum vertex degree $o(\sqrt{m})$ contains a set of at most $(\frac{1}{2} - \epsilon_r)m$ edges the removal of which breaks the hypergraph into connected components with at most $m/2$ edges. We use this to give an algorithm running in time $d^{(1 - \epsilon_r)m}$ that decides satisfiability of $m$-variable $(d, k)$-CSPs in which every variable appears in at most $r$ constraints, where $\epsilon_r$ depends only on $r$ and $k\in o(\sqrt{m})$. Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable $(2, k)$-CSPs with variable frequency $r$ can be refuted in tree-like resolution in size $2^{(1 - \epsilon_r)m}$. Furthermore for Tseitin formulas on graphs with degree at most $k$ (which are $(2, k)$-CSPs) we give a deterministic algorithm finding such a refutation.

10.37236/8627 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Yi Zhang ◽  
Yi Zhao ◽  
Mei Lu

Let $n, s$ be positive integers such that $n$ is sufficiently large and $s\le n/3$. Suppose $H$ is a 3-uniform hypergraph of order $n$ without isolated vertices. If $\deg(u)+\deg(v) > 2(s-1)(n-1)$ for any two vertices $u$ and $v$ that are contained in some edge of $H$, then $H$ contains a matching of size $s$. This degree sum condition is best possible and confirms a conjecture of the authors [Electron. J. Combin. 25 (3), 2018], who proved the case when $s= n/3$.


10.37236/7712 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider connected components in $k$-uniform hypergraphs for the following notion of connectedness: given integers $k\ge 2$ and $1\le j \le k-1$, two $j$-sets (of vertices) lie in the same $j$-component if there is a sequence of edges from one to the other such that consecutive edges intersect in at least $j$ vertices.We prove that certain collections of $j$-sets constructed during a breadth-first search process on $j$-components in a random $k$-uniform hypergraph are reasonably regularly distributed with high probability. We use this property to provide a short proof of the asymptotic size of the giant $j$-component shortly after it appears.


2016 ◽  
Vol 25 (6) ◽  
pp. 850-869
Author(s):  
DENNIS CLEMENS ◽  
YURY PERSON

A uniform hypergraph H is called k-Ramsey for a hypergraph F if, no matter how one colours the edges of H with k colours, there is always a monochromatic copy of F. We say that H is k-Ramsey-minimal for F if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz studied various parameters of Ramsey-minimal graphs. In this paper we initiate the study of minimum degrees and codegrees of Ramsey-minimal 3-uniform hypergraphs. We show that the smallest minimum vertex degree over all k-Ramsey-minimal 3-uniform hypergraphs for Kt(3) is exponential in some polynomial in k and t. We also study the smallest possible minimum codegree over 2-Ramsey-minimal 3-uniform hypergraphs.


10.37236/7658 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Yi Zhang ◽  
Yi Zhao ◽  
Mei Lu

We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-uniform hypergraph without an isolated vertex. Suppose that $H$ is a 3-uniform hypergraph whose order $n$ is sufficiently large and divisible by $3$. If $H$ contains no isolated vertex and $\deg(u)+\deg(v) > \frac{2}{3}n^2-\frac{8}{3}n+2$ for any two vertices $u$ and $v$ that are contained in some edge of $H$, then $H$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different space barrier from the one for the corresponding Dirac problem.


2017 ◽  
Vol 340 (6) ◽  
pp. 1172-1179 ◽  
Author(s):  
Oliver Cooley ◽  
Richard Mycroft

2013 ◽  
Vol Vol. 15 no. 2 (Discrete Algorithms) ◽  
Author(s):  
Edyta Szymańska

Discrete Algorithms International audience In this paper we consider the problem of deciding whether a given r-uniform hypergraph H with minimum vertex degree at least c\binom|V(H)|-1r-1, or minimum degree of a pair of vertices at least c\binom|V(H)|-2r-2, has a vertex 2-coloring. Motivated by an old result of Edwards for graphs, we obtain first optimal dichotomy results for 2-colorings of r-uniform hypergraphs. For each problem, for every r≥q 3 we determine a threshold value depending on r such that the problem is NP-complete for c below the threshold, while for c strictly above the threshold it is polynomial. We provide an algorithm constructing the coloring with time complexity O(n^\lfloor 4/ε\rfloor+2\log n) with some ε>0. This algorithm becomes more efficient in the case of r=3,4,5 due to known Turán numbers of the triangle and the Fano plane. In addition, we determine the computational complexity of strong k-coloring of 3-uniform hypergraphs H with minimum vertex degree at least c\binom|V(H)|-12, for some c, leaving a gap for k≥q 5 which vanishes as k→ ∞.


10.37236/8611 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Dennis Clemens ◽  
Julia Ehrenmüller ◽  
Yury Person

A Hamilton Berge cycle of a hypergraph on $n$ vertices is an alternating sequence $(v_1, e_1, v_2, \ldots, v_n, e_n)$ of distinct vertices $v_1, \ldots, v_n$ and distinct hyperedges $e_1, \ldots, e_n$ such that $\{v_1,v_n\}\subseteq e_n$ and $\{v_i, v_{i+1}\} \subseteq e_i$ for every $i\in [n-1]$. We prove the following Dirac-type theorem about Berge cycles in the binomial random $r$-uniform hypergraph $H^{(r)}(n,p)$: for every integer $r \geq 3$, every real $\gamma>0$ and $p \geq \frac{\ln^{17r} n}{n^{r-1}}$ asymptotically almost surely,  every spanning subgraph $H \subseteq H^{(r)}(n,p)$ with  minimum vertex degree $\delta_1(H) \geq \left(\frac{1}{2^{r-1}} + \gamma\right) p \binom{n}{r-1}$ contains a Hamilton Berge cycle. The minimum degree condition is asymptotically tight and the bound on $p$ is optimal up to some polylogarithmic factor.  


Sign in / Sign up

Export Citation Format

Share Document