scholarly journals The Size of the Giant Component in Random Hypergraphs: a Short Proof

10.37236/7712 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider connected components in $k$-uniform hypergraphs for the following notion of connectedness: given integers $k\ge 2$ and $1\le j \le k-1$, two $j$-sets (of vertices) lie in the same $j$-component if there is a sequence of edges from one to the other such that consecutive edges intersect in at least $j$ vertices.We prove that certain collections of $j$-sets constructed during a breadth-first search process on $j$-components in a random $k$-uniform hypergraph are reasonably regularly distributed with high probability. We use this property to provide a short proof of the asymptotic size of the giant $j$-component shortly after it appears.

10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


10.37236/9302 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Lele Liu ◽  
Changxiang He ◽  
Liying Kang

Let $G$ be a graph. We say an $r$-uniform hypergraph $H$ is a Berge-$G$ if there exists a bijection $\phi: E(G)\to E(H)$ such that $e\subseteq\phi(e)$ for each $e\in E(G)$. Given a family of $r$-uniform hypergraphs $\mathcal{F}$ and an $r$-uniform hypergraph $H$, a spanning sub-hypergraph $H'$ of $H$ is $\mathcal{F}$-saturated in $H$ if $H'$ is $\mathcal{F}$-free, but adding any edge in $E(H)\backslash E(H')$ to $H'$ creates a copy of some $F\in\mathcal{F}$. The saturation number of $\mathcal{F}$ is the minimum number of edges in an $\mathcal{F}$-saturated spanning sub-hypergraph of $H$. In this paper, we asymptotically determine the saturation number of Berge stars in random $r$-uniform hypergraphs.


2017 ◽  
Vol 5 ◽  
Author(s):  
LUCA GUGELMANN ◽  
RAJKO NENADOV ◽  
YURY PERSON ◽  
NEMANJA ŠKORIĆ ◽  
ANGELIKA STEGER ◽  
...  

A celebrated result of Rödl and Ruciński states that for every graph $F$, which is not a forest of stars and paths of length 3, and fixed number of colours $r\geqslant 2$ there exist positive constants $c,C$ such that for $p\leqslant cn^{-1/m_{2}(F)}$ the probability that every colouring of the edges of the random graph $G(n,p)$ contains a monochromatic copy of $F$ is $o(1)$ (the ‘0-statement’), while for $p\geqslant Cn^{-1/m_{2}(F)}$ it is $1-o(1)$ (the ‘1-statement’). Here $m_{2}(F)$ denotes the 2-density of $F$. On the other hand, the case where $F$ is a forest of stars has a coarse threshold which is determined by the appearance of a certain small subgraph in $G(n,p)$. Recently, the natural extension of the 1-statement of this theorem to $k$-uniform hypergraphs was proved by Conlon and Gowers and, independently, by Friedgut, Rödl and Schacht. In particular, they showed an upper bound of order $n^{-1/m_{k}(F)}$ for the 1-statement, where $m_{k}(F)$ denotes the $k$-density of $F$. Similarly as in the graph case, it is known that the threshold for star-like hypergraphs is given by the appearance of small subgraphs. In this paper we show that another type of threshold exists if $k\geqslant 4$: there are $k$-uniform hypergraphs for which the threshold is determined by the asymmetric Ramsey problem in which a different hypergraph has to be avoided in each colour class. Along the way we obtain a general bound on the 1-statement for asymmetric Ramsey properties in random hypergraphs. This extends the work of Kohayakawa and Kreuter, and of Kohayakawa, Schacht and Spöhel who showed a similar result in the graph case. We prove the corresponding 0-statement for hypergraphs satisfying certain balancedness conditions.


10.37236/3222 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Vindya Bhat ◽  
Vojtěch Rödl

In 1964, Erdős proved that for any $\alpha > 0$, an $l$-uniform hypergraph $G$ with $n \geq n_0(\alpha, l)$ vertices and $\alpha \binom{n}{l}$ edges contains a large complete $l$-equipartite subgraph. This implies that any sufficiently large $G$ with density $\alpha > 0$ contains a large subgraph with density at least $l!/l^l$.In this note we study a similar problem for $l$-uniform hypergraphs $Q$ with a weak quasi-random property (i.e. with edges uniformly distributed over the sufficiently large subsets of vertices). We prove that any sufficiently large quasi-random $l$-uniform hypergraph $Q$ with density $\alpha > 0$ contains a large subgraph with density at least $\frac{(l-1)!}{l^{l-1}-1}$. In particular, for $l=3$, any sufficiently large such $Q$ contains a large subgraph with density at least $\frac{1}{4}$ which is the best possible lower bound.We define jumps for quasi-random sequences of $l$-graphs and our result implies that every number between 0 and $\frac{(l-1)!}{l^{l-1}-1}$ is a jump for quasi-random $l$-graphs. For $l=3$ this interval can be improved based on a recent result of Glebov, Král' and Volec. We prove that every number between [0, 0.3192) is a jump for quasi-random $3$-graphs.


2018 ◽  
Vol 27 (5) ◽  
pp. 741-762 ◽  
Author(s):  
OLIVER COOLEY ◽  
MIHYUN KANG ◽  
YURY PERSON

In this paper we considerj-tuple-connected components in randomk-uniform hypergraphs (thej-tuple-connectedness relation can be defined by letting twoj-sets be connected if they lie in a common edge and considering the transitive closure; the casej= 1 corresponds to the common notion of vertex-connectedness). We show that the existence of aj-tuple-connected component containing Θ(nj)j-sets undergoes a phase transition and show that the threshold occurs at edge probability$$\frac{(k-j)!}{\binom{k}{j}-1}n^{j-k}.$$Our proof extends the recent short proof for the graph case by Krivelevich and Sudakov, which makes use of a depth-first search to reveal the edges of a random graph.Our main original contribution is abounded degree lemma, which controls the structure of the component grown in the search process.


10.37236/8167 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Asaf Ferber ◽  
Lior Hirschfeld

In this paper we prove an optimal co-degrees resilience property for the binomial $k$-uniform hypergraph model $H_{n,p}^k$ with respect to perfect matchings. That is, for a sufficiently large $n$ which is divisible by $k$, and $p\geq C_k\log {n}/n$, we prove that with high probability every subgraph $H\subseteq H^k_{n,p}$ with minimum co-degree (meaning, the number of supersets every set of size $k-1$ is contained in) at least $(1/2+o(1))np$ contains a perfect matching.


10.37236/6890 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Pat Devlin ◽  
Jeff Kahn

Extending the notion of (random) $k$-out graphs, we consider when the $k$-out hypergraph is likely to have a perfect fractional matching. In particular, we show that for each $r$ there is a $k=k(r)$ such that the $k$-out $r$-uniform hypergraph on $n$ vertices has a perfect fractional matching with high probability (i.e., with probability tending to $1$ as $n\to\infty$) and prove an analogous result for $r$-uniform $r$-partite hypergraphs. This is based on a new notion of hypergraph expansion and the observation that sufficiently expansive hypergraphs admit perfect fractional matchings. As a further application, we give a short proof of a stopping-time result originally due to Krivelevich.


Author(s):  
Deepak Bal ◽  
Ross Berkowitz ◽  
Pat Devlin ◽  
Mathias Schacht

Abstract In this note we study the emergence of Hamiltonian Berge cycles in random r-uniform hypergraphs. For $r\geq 3$ we prove an optimal stopping time result that if edges are sequentially added to an initially empty r-graph, then as soon as the minimum degree is at least 2, the hypergraph with high probability has such a cycle. In particular, this determines the threshold probability for Berge Hamiltonicity of the Erdős–Rényi random r-graph, and we also show that the 2-out random r-graph with high probability has such a cycle. We obtain similar results for weak Berge cycles as well, thus resolving a conjecture of Poole.


Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .


Sign in / Sign up

Export Citation Format

Share Document