scholarly journals Optimal Image Steganography Content Destruction Techniques

2021 ◽  
Vol 15 ◽  
pp. 84-88
Author(s):  
Siddeeq Y. Ameen ◽  
Muthana R. Al-Badrany

The paper presents two approaches for destroying steganogrphy content in an image. The first is the overwriting approach where a random data can be written again over steganographic images whereas the second approach is the denoising approach. With the second approach two kinds of destruction techniques have been adopted these are filtering and discrete wavelet techniques. These two approaches have been simulated and evaluated over two types of hiding techniques, Least Significant Bit LSB technique and Discrete Cosine Transform DCT technique. The results of the simulation show the capability of both approaches to destroy the hidden information without any alteration to the cover image except the denoising approach enhance the PSNR in any received image even without hidden information by an average of 4dB.

2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Dian Hafidh Zulfikar

<p class="SammaryHeader" align="center"><strong><em>Abstract</em></strong><em></em></p><p><em> </em>The  least significant-bit (LSB) based techniques are very popular for steganography in spatial domain. The simplest LSB technique simply replaces the LSB in the cover image with the  bits from secret information. Further advanced techniques use some criteria to identify the pixels in which LSB(s) can be replaced with the bits of secret information. In Discrete Cosine Transform (DCT) based technique insertion of secret information in carrier depends on the DCT coefficients. Any DCT coefficient value above proper threshold is a potential place for insertion of secret information.</p><p class="Abstrak"><strong> </strong><strong>Keywords :</strong> Discrete Cosine Transform (DCT), steganography, secret message</p><p><strong><em> </em><em>Abstra</em><em>k</em></strong></p><p>Pada steganografi domain spasial, teknik least significant-bit (LSB) merupakan teknik yang paling banyak digunakan pada steganografi. Teknik yang sederhana yang hanya mengubah nilai LSB pada cover image dengan nilai bit pesan rahasia, atau dengan teknik yang lebih baik lagi yaitu dengan menentukan bit-bit LSB mana yang akan dilakukan pergantian nilai bit. Lain halnya dengan metode Discrete Cosine Transform (DCT), teknik steganografi ini akan menyembunyikan informasi rahasia tergantung dari nilai Koefisien DCT.</p><p class="Abstrak"> </p><p class="Abstrak"><strong>Kata Kunci :</strong> Steganografi, DCT, Citra, JPEG, Pesan Rahasia</p>


Author(s):  
Kokila B. Padeppagol ◽  
Sandhya Rani M H

Image steganography is an art of hiding images secretly within another image. There are several ways of performing image steganography; one among them is the spatial approach.The most popular spatial domain approach of image steganography is the Least Significant Bit (LSB) method, which hides the secret image pixel information in the LSB of the cover image pixel information. In this paper a LSB based steganography approach is used to design hardware architecture for the Image steganography. The Discrete Wavelet Transform (DWT) is used here to transform the cover image into higher and lower wavelet coefficients and use these coefficients in hiding the secret image. the design also includes encryption of secret image data, to provide a higher level of security to the secret image. The steganography system involving the stegno module and a decode module is designed here. The design was simulated, synthesized and implemented on Artix -7 FPGA. The operation hiding and retrieving images was successfully verified through simulations.


Author(s):  
Huda Kadhim Tayyeh ◽  
Ahmed Sabah Ahmed AL-Jumaili

Steganography is one of the cryptography techniques where secret information can be hidden through multimedia files such as images and videos. Steganography can offer a way of exchanging secret and encrypted information in an untypical mechanism where communicating parties can only interpret the secret message. The literature has shown a great interest in the least significant bit (LSB) technique which aims at embedding the secret message bits into the most insignificant bits of the image pixels. Although LSB showed a stable performance of image steganography yet, many works should be done on the message part. This paper aims to propose a combination of LSB and Deflate compression algorithm for image steganography. The proposed Deflate algorithm utilized both LZ77 and Huffman coding. After compressing the message text, LSB has been applied to embed the text within the cover image. Using benchmark images, the proposed method demonstrated an outperformance over the state of the art. This can proof the efficacy of using Deflate as a data compression prior to the LSB embedding.


Author(s):  
Soo Ann Nie ◽  
Ghazali Sulong ◽  
Rozniza Ali ◽  
Andrew Abel

<span lang="EN-US">Steganography is one of the method to communicate in a hidden way. In another word, steganography literally means the practice of hiding messages or information within another data. Previous studies have proposed various steganography techniques using different approaches including Least Significant Bit (LSB), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). However, different approaches still have its own weaknesses. Therefore image stenography using Knight Tour Algorithm with Least Significant Bit (LSB) technique is presented. The main objective is to improve the security factor in the stego image. Basically, the proposed technique is divided into two parts which are the sender and receiver side. Then, steganalysis which is a type of attack on stenography algorithm is used to detect the secret message in the cover image by the statistical analysis of pixel values. Chi Square Statistical Attach which is one of the type of steganalysis is used to detect these near-equal Po Vs in images and bases the probability of embedding on how close to equal the even pixel values and their corresponding odd pixel values are in the test image. The Knight Tour Algorithm is applied due to the common Least Significant Bit technique that is weak in security and easily decoded by outsider.</span>


Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


Sign in / Sign up

Export Citation Format

Share Document