scholarly journals Didáctica disruptiva STEM

2020 ◽  
Vol 1 (2) ◽  
pp. 1-9
Author(s):  
Melvin Chaves Duarte

Las autoridades de la Universidad Fidélitas de Costa Rica, han establecido como un proyecto estratégico, la búsqueda de un modelo curricular contemporáneo y disruptivo, para responder a las nuevas generaciones de estudiantes creativos del Siglo XXI. Este modelo se adopta del análisis curricular de las principales Universidades a nivel mundial, como la Universidad de Harvard, el Instituto Tecnológico de Massachusetts (MIT), la Universidad Federal de Zúrich (ETH) y la Universidad Nacional de Singapur (NUS), universidades que ocupan los primeros lugares del ranking QS de Inglaterra, por su capacidad de innovación para resolver los problemas globales de los próximos 50 años. El modelo curricular adaptado por la Universidad Fidélitas se fundamenta en la didáctica disruptiva STEM (cuyas siglas significan Science, Technology, Engieneering & Mathematics), esto se traduce como ciencia, tecnología, ingeniería y matemática. La National Science Foundation propuso el modelo STEM, a inicios de la década de los 90. Al respecto, se dice que la ciencia (S) y la matemática (M) aportan la investigación y la medición, para que la ingeniería (E) diseñe e innove en la búsqueda de la solución de problemas reales y como resultado, se obtiene la tecnología (T), la cual se refiere a los productos, servicios y sistemas, aportados por la Ingeniería en la solución de los problemas complejos. Al mismo tiempo, es un enfoque curricular integrador: integra el saber saber, el saber hacer, el saber ser y el saber convivir, pilares fundamentales educativos de la UNESCO . (Brodeur, 2007). La filosofía del modelo STEM, potencia la creatividad de los estudiantes y los docentes para resolver problemas complejos, con el fin de lograr la mejora continua de la sociedad, convirtiendo las necesidades en ideas creativas necesarias para enganchar a las generaciones de los estudiantes digitales (Y- Millennials) y virtuales (Z y Alfa).

2020 ◽  
Vol 2 (2) ◽  
pp. 1-9
Author(s):  
Melvin Chaves Duarte

Las autoridades de la Universidad Fidélitas de Costa Rica, han establecido como un proyecto estratégico, la búsqueda de un modelo curricular contemporáneo y disruptivo, para responder a las nuevas generaciones de estudiantes creativos del Siglo XXI. Este modelo se adopta del análisis curricular de las principales Universidades a nivel mundial, como la Universidad de Harvard, el Instituto Tecnológico de Massachusetts (MIT), la Universidad Federal de Zúrich (ETH) y la Universidad Nacional de Singapur (NUS), universidades que ocupan los primeros lugares del ranking QS de Inglaterra, por su capacidad de innovación para resolver los problemas globales de los próximos 50 años. El modelo curricular adaptado por la Universidad Fidélitas se fundamenta en la didáctica disruptiva STEM (cuyas siglas significan Science, Technology, Engieneering & Mathematics), esto se traduce como ciencia, tecnología, ingeniería y matemática. La National Science Foundation propuso el modelo STEM, a inicios de la década de los 90. Al respecto, se dice que la ciencia (S) y la matemática (M) aportan la investigación y la medición, para que la ingeniería (E) diseñe e innove en la búsqueda de la solución de problemas reales y como resultado, se obtiene la tecnología (T), la cual se refiere a los productos, servicios y sistemas, aportados por la Ingeniería en la solución de los problemas complejos. Al mismo tiempo, es un enfoque curricular integrador: integra el saber saber, el saber hacer, el saber ser y el saber convivir, pilares fundamentales educativos de la UNESCO . (Brodeur, 2007). La filosofía del modelo STEM, potencia la creatividad de los estudiantes y los docentes para resolver problemas complejos, con el fin de lograr la mejora continua de la sociedad, convirtiendo las necesidades en ideas creativas necesarias para enganchar a las generaciones de los estudiantes digitales (Y- Millennials) y virtuales (Z y Alfa).


2022 ◽  
pp. 109821402110416
Author(s):  
Caitlin Howley ◽  
Johnavae Campbell ◽  
Kimberly Cowley ◽  
Kimberly Cook

In this article, we reflect on our experience applying a framework for evaluating systems change to an evaluation of a statewide West Virginia alliance funded by the National Science Foundation (NSF) to improve the early persistence of rural, first-generation, and other underrepresented minority science, technology, engineering, and mathematics (STEM) students in their programs of study. We begin with a description of the project and then discuss the two pillars around which we have built our evaluation of this project. Next, we present the challenge we confronted (despite the utility of our two pillars) in identifying and analyzing systems change, as well as the literature we consulted as we considered how to address this difficulty. Finally, we describe the framework we applied and examine how it helped us and where we still faced quandaries. Ultimately, this reflection serves two key purposes: 1) to consider a few of the challenges of measuring changes in systems and 2) to discuss our experience applying one framework to address these issues.


2020 ◽  
Vol 42 (1) ◽  
pp. 90-111 ◽  
Author(s):  
Shelly Rodgers ◽  
Ze Wang ◽  
Jack C. Schultz

The research describes efforts toward developing a valid and reliable scale used to assess science communication training effectiveness (SCTE) undertaken in conjunction with a 4-year project funded by the National Science Foundation. Results suggest that the SCTE scale possesses acceptable psychometric properties, specifically reliability and validity, with regard to responses from graduate students in science, technology, engineering, and math fields. While it cannot be concluded that the SCTE scale is the “be-all-end-all” tool, it may assist investigators in gauging success of science communication training efforts and by identifying aspects of the program that are working or that need improving.


2021 ◽  
Vol 35 (3) ◽  
pp. 300-329
Author(s):  
Julia Mcquillan ◽  
Nestor Hernandez

Intersecting systems of inequality (i.e., gender and race/ethnicity) are remarkably resistant to change. Many universities, however, seek National Science Foundation Institutional Transformation awards to change processes, procedures, and cultures to make science, technology, engineering, and mathematics (STEM) departments more inclusive. In this article we describe a case study with observations for eight years of before (2000–2007), five during (2008–2013), and seven after (2014–2020) intensive efforts to increase women through reducing barriers and increasing access to women. Finally, we reflect on flawed assumptions built into the proposal, the slow and uneven change in the proportion of women over time, the strengths and weaknesses of numeric assessments, and the value of a longer view for seeing how seeds planted with promising practices initiated during the award may end with the funding but can reemerge and bear fruit when faculty who engage in equity work are in positions of authority later in their careers.


2014 ◽  
Vol 9 (4) ◽  
pp. 110-112
Author(s):  
Patricia A. Dawson

“Why So Few? Women in Science, Technology, Engineering and Mathematics” (Hill, C., Corbett, C., Rose, A., 2010) reports on an extensive study of women’s underrepresentation in science, technology, engineering, and mathematics professions. Funded by the National Science Foundation, the project was conducted by American Association of University Women. The resource includes findings from eight research studies which examined social and environmental factors which contribute to women’s underrepresentation in STEM fields as well as helpful tables, charts and bibliography resources. The 110 page resource will be particularly helpful for scholars working in program design to advance STEM opportunities for women.


2015 ◽  
Vol 1 (1) ◽  
pp. 59-70
Author(s):  
Maureen Carroll

This paper describes the journey of d.Loft STEM Learning, a project of The National Science Foundation ITEST program, which supports building knowledge about approaches, models, and interventions involving K-12 education to increase the nation’s capacity and innovation in STEM (science, technology, engineering and mathematics) fields. d.Loft STEM Learning used design thinking as an underlying theoretical and pedagogical approach to enhance STEM learning. Design thinking is a human-centered, prototype-driven innovation process and a series of mindsets that provides a robust scaffold for divergent problem-solving. This paper describes how the design thinking provided a frame within which mentorship and STEM learning thrived, and suggests new ways to conceptualize student learning and teacher practice in 21st century learning contexts.


Sign in / Sign up

Export Citation Format

Share Document