scholarly journals A Novel Control Strategy for PV/Wind/Battery Hybrid System Using High Gain Boost Converter

In this paper, a classic proportional–integral (PI) control strategy as an energy management strategy (EMS) and a microgrid stand-alone power system configuration are proposed to work independently out of grid. The proposed system combines photovoltaics (PVs), and Battery. The system supplies a dump load with its demand power. The system includes DC/DC and DC/AC converters, as well as a maximum power point tracking (MPPT) to maximize the harvested energy from PV array. The classic PI control strategy is used to control the main system parameters like state-of-charge (SOC) for the battery. The corresponding energy management and control strategy are proposed to realize the power balance among three ports in different operating scenarios, which comprehensively takes both the maximum power point tracking (MPPT) benefit and the battery charging/discharging management into consideration. The simulations are conducted using the Matlab/Simulink software to verify the operation performance of the proposed PV/battery hybrid distributed power generation system with the corresponding control algorithms, where the MPPT control loop, the battery charging/discharging management loop are enabled accordingly in different operating scenarios.

Author(s):  
V Pratyusha and Ch Chinna Veeraiah

In this paper, a classic proportional–integral (PI) control strategy as an energy management strategy (EMS) and a microgrid stand-alone power system configuration are proposed to work independently out of grid. The proposed system combines photovoltaics (PVs), and Battery. The system supplies a dump load with its demand power. The system includes DC/DC and DC/AC converters, as well as a maximum power point tracking (MPPT) to maximize the harvested energy from PV array. The classic PI control strategy is used to control the main system parameters like state-of-charge (SOC) for the battery. The corresponding energy management and control strategy are proposed to realize the power balance among three ports in different operating scenarios, which comprehensively takes both the maximum power point tracking (MPPT) benefit and the battery charging/discharging management into consideration. The simulations are conducted using the Matlab/Simulink software to verify the operation performance of the proposed PV/battery hybrid distributed power generation system with the corresponding control algorithms, where the MPPT control loop, the battery charging/discharging management loop are enabled accordingly in different operating scenarios.


Sign in / Sign up

Export Citation Format

Share Document