scholarly journals SEAL-Embedded: A Homomorphic Encryption Library for the Internet of Things

Author(s):  
Deepika Natarajan ◽  
Wei Dai

The growth of the Internet of Things (IoT) has led to concerns over the lack of security and privacy guarantees afforded by IoT systems. Homomorphic encryption (HE) is a promising privacy-preserving solution to allow devices to securely share data with a cloud backend; however, its high memory consumption and computational overhead have limited its use on resource-constrained embedded devices. To address this problem, we present SEAL-Embedded, the first HE library targeted for embedded devices, featuring the CKKS approximate homomorphic encryption scheme. SEAL-Embedded employs several computational and algorithmic optimizations along with a detailed memory re-use scheme to achieve memory efficient, high performance CKKS encoding and encryption on embedded devices without any sacrifice of security. We additionally provide an “adapter” server module to convert data encrypted by SEAL-Embedded to be compatible with the Microsoft SEAL library for homomorphic encryption, enabling an end-to-end solution for building privacy-preserving applications. For a polynomial ring degree of 4096, using RNS primes of 30 or fewer bits, our library can be configured to use between 64–137 KB of RAM and 1–264 KB of flash data, depending on developer-selected configurations and tradeoffs. Using these parameters, we evaluate SEAL-Embedded on two different IoT platforms with high performance, memory efficient, and balanced configurations of the library for asymmetric and symmetric encryption. With 136 KB of RAM, SEAL-Embedded can perform asymmetric encryption of 2048 single-precision numbers in 77 ms on the Azure Sphere Cortex-A7 and 737 ms on the Nordic nRF52840 Cortex-M4.

2016 ◽  
Vol 102 ◽  
pp. 83-95 ◽  
Author(s):  
Lukas Malina ◽  
Jan Hajny ◽  
Radek Fujdiak ◽  
Jiri Hosek

2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jorge Bernal Bernabe ◽  
Jose L. Hernandez-Ramos ◽  
Antonio F. Skarmeta Gomez

Security and privacy concerns are becoming an important barrier for large scale adoption and deployment of the Internet of Things. To address this issue, the identity management system defined herein provides a novel holistic and privacy-preserving solution aiming to cope with heterogeneous scenarios that requires both traditional online access control and authentication, along with claim-based approach for M2M (machine to machine) interactions required in IoT. It combines a cryptographic approach for claim-based authentication using the Idemix anonymous credential system, together with classic IdM mechanisms by relying on the FIWARE IdM (Keyrock). This symbiosis endows the IdM system with advanced features such as privacy-preserving, minimal disclosure, zero-knowledge proofs, unlikability, confidentiality, pseudonymity, strong authentication, user consent, and offline M2M transactions. The IdM system has been specially tailored for the Internet of Things bearing in mind the management of both users’ and smart objects’ identity. Moreover, the IdM system has been successfully implemented, deployed, and tested in the scope of SocIoTal European research project.


2021 ◽  
Vol 1 (1) ◽  
pp. 43-51
Author(s):  
Sundresan Perumal

Kevin Ashton coined the phrase Internet of Things in 1999 with high performance implementation for corporate and social world. Thanks to the success of high-performing Internet of Things (IoT) whereby the tags and sensors are the foundation for IoT implementation of radio frequency identification with enormous implementation patterns. Real world objects and systems that are remotely managed using program- based tools may be outfitted with RFID tags. Radio frequency recognition devices may identify objects and sense information. Very thin micro-sized RFID chips that can attach remotely are built. The internet of things will cross over USD 267 billion in 2020. According to the report by Gartner, there would be $273 billion linked devices around the world in 2014. The quantity, which is equal to 8.4 billion goods, is 31% more than last year. This study examines security and productivity in the IoT. It is very popular to use Internet of Things (IoT) in robotics because of sensor sensors, advanced wireless technology and use of software programming. Both wireless IP-based systems come with built-in GPS modules. The utility of smart cities and home automation was increasingly accentuated by the appearance of vast databases of smart IP-based sensors. Within the scope of this study, one of the goals is to establish simulation trends that can cover protection weakness of the Internet of Things. In the novel, the simulation processes were implemented through Contiki Cooja and CupCarbon. The modern age is greatly being affected by impossibly sophisticated technical devices. It is treated under the umbrella of Internet of Things (IoT). Several applications are commonly using IoT linked technologies to a broad variety of purposes. IoT contains many other concepts such as universal computing, widespread computing, ambient computing, among several others. The work presents the implementation using high performance framework for the security in the IoT environment using security mechanism on IPv6.


2020 ◽  
Author(s):  
Vinod Kumar Verma

BACKGROUND COVID- 19 pandemics has affected the life of every human being in this world dramatically. The daily routine of the human has been changed to an uncertain extent. Some of the people are affected by the COVID-19, and some of the people are in fear of this epidemic. This has completely changed the thorough process of the people, and now, they are looking for solutions of this pandemic at different levels of the human addressable areas. These areas include medicine, vaccination, precautions, psychology, technology-assisted solutions like information technology, etc. There is a need to think in the direction of technology compliant solutions in the era of COVID-19 pandemic. OBJECTIVE The objective of this paper is to discuss the existing views and focus on the recommendations for the enhancement in the current situation from COVID-19. METHODS Based on the literature, perceptions, challenges, and viewpoints, the following opinions are suggested to the research community for the prevention and elimination of global pandemic COVID-19. The research community irrespective of the discipline focus on the following: 1. The comprehensive thought process for the designing of the internet of things (IoT) based solutions for healthcare applications used in the prevention from COVID-19. 2. Strategies for restricting outbreak of COVID-19 with the emerging trends in Ehealthcare applications. Which should be the optimal strategy to deal with a global pandemic? 3. Explorations on the data analysis as derived from the advanced data mining and warehousing associated with IoT. Besides, cloud-based technologies can be incorporated for the global spread of healthcare-related information to serve the community of different countries in the world. 4. The most adaptable method and technology can be deployed for the development of innovative solutions for COVID-19 related people like smart, patient-centric healthcare information systems. 5. Implementation of smart solutions like wearable technology for mask and PPE along with their disposal can be considered to deal with a global epidemic like COVID-19. This will lead to the manufacturing and incorporation of wearable technologies in the healthcare sector by industries. 6. A Pervasive thought process can be standardized for dealing with global pandemic like COVID-19. In addition, research measures should be considered for the security and privacy challenges of IoT services carrying healthcare-related information. These areas and directions are diverse but, in parallel, the need for healthy bonding and correlation between the people like researchers and scientists irrespective of their discipline. The discipline may vary from medical, engineering, computing, finance, and management, etc. In addition, standard protocols and interoperability measures can be worked out for the exchange of information in the global pandemic situations. RESULTS Recommendations Discussed CONCLUSIONS In this paper, the opinions have been discussed in the multi-disciplinary areas of research like COVID-19 challenges, medicines and vaccines, precautionary measures, technology assistance, and the Internet of Things. These opinions and discussion serve as an integrated platform for researchers and scientists to think about future perspectives to deal with healthcare-related COVID-19 pandemic situation. This includes the original, significant, and visionary automation based ideas, innovations, scientific designs, and applications focusing on Inter-disciplinary technology compliant solutions like IoT, vaccinations, manufacturing, preventive measures, etc. for the improvement of efficiency and reliability of existing healthcare systems. For the future, there is dire need to strengthen the technology not only in the one area but also for the interdisciplinary areas to recover from the pandemic situation rapidly and serve the community.


2018 ◽  
Vol 3 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Ernest Ezema ◽  
Azizol Abdullah ◽  
Nor Fazlida Binti Mohd

The concept of the Internet of Things (IoT) has evolved over time. The introduction of the Internet of Things and Services into the manufacturing environment has ushered in a fourth industrial revolution: Industry 4.0. It is no doubt that the world is undergoing constant transformations that somehow change the trajectory and history of humanity. We can illustrate this with the first and second industrial revolutions and the information revolution. IoT is a paradigm based on the internet that comprises many interconnected technologies like RFID (Radio Frequency Identification) and WSAN (Wireless Sensor and Actor Networks) to exchange information. The current needs for better control, monitoring and management in many areas, and the ongoing research in this field, have originated the appearance and creation of multiple systems like smart-home, smart-city and smart-grid. The IoT services can have centralized or distributed architecture. The centralized approach provides is where central entities acquire, process, and provide information while the distributed architectures, is where entities at the edge of the network exchange information and collaborate with each other in a dynamic way. To understand the two approaches, it is necessary to know its advantages and disadvantages especially in terms of security and privacy issues. This paper shows that the distributed approach has various challenges that need to be solved. But also, various interesting properties and strengths. In this paper we present the main research challenges and the existing solutions in the field of IoT security, identifying open issues, the industrial revolution and suggesting some hints for future research.


2020 ◽  
Vol 8 (27) ◽  
pp. 13619-13629 ◽  
Author(s):  
Asif Abdullah Khan ◽  
Md Masud Rana ◽  
Guangguang Huang ◽  
Nanqin Mei ◽  
Resul Saritas ◽  
...  

A high-performance perovskite/polymer piezoelectric nanogenerator for next generation self-powered wireless micro/nanodevices.


Author(s):  
Martin Victor K ◽  
J. Immanuel Johnraja ◽  
Getzi Jeba Leelipushpam ◽  
J. Jebaveerasingh Jebadurai ◽  
I. Bildass Santhosam

2016 ◽  
Vol 117 (3/4) ◽  
pp. 289-292 ◽  
Author(s):  
Bruce Massis

Purpose – The purpose of this paper is to consider the Internet of Things (IOT) and its potential impact on libraries. Design/methodology/approach – This paper presents a literature review and a commentary on this topic that have been addressed by professionals, researchers and practitioners. Findings – In communicating the issues when comprehending the scope of the IOT, libraries need not succumb to the sometimes near-hysteria that surrounds the rhetoric regarding security and privacy. But, librarians must actively engage in the conversation and its subsequent actions to respond to patrons who use library networks and devices with calm, logical and transparent answers to those questions concerning what they are doing to ensure that security and privacy vulnerabilities are regularly addressed. Originality/value – The value in concentrating on this topic is to provide background and suggest several approaches to security and privacy concerns regarding the IOT.


Sign in / Sign up

Export Citation Format

Share Document