scholarly journals Локальные гранд пространства Лебега

Author(s):  
S.G. Samko ◽  
S.M. Umarkhadzhiev

We introduce ``local grand'' Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0<p<\infty,$ $\Omega \subseteq \mathbb{R}^n$, where the process of ``grandization'' relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where ``grandization'' relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local ``grandizer'' $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a ``single-point grandization'' of Lebesgue spaces $L^p(\Omega)$, $1<p<\infty$, provided that the lower Matuszewska--Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.

2016 ◽  
Vol 19 (3) ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Mieczysław Mastyło ◽  
Alexander Meskhi

AbstractThe boundedness of multi(sub)linear Hardy&ndash;Littlewood maximal, Calder&oacute;n&ndash;Zygmund and fractional integral operators defined on metric measure spaces is established in weighted grand Lebesgue spaces. In particular, we derive the one-weight inequality for maximal and singular integrals under the Muckenhoupt type conditions, weighted Sobolev type theorem and trace type inequality for fractional integrals.


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2020 ◽  
Vol 23 (5) ◽  
pp. 1452-1471
Author(s):  
Vakhtang Kokilashvili ◽  
Alexander Meskhi

Abstract D. Adams type trace inequalities for multiple fractional integral operators in grand Lebesgue spaces with mixed norms are established. Operators under consideration contain multiple fractional integrals defined on the product of quasi-metric measure spaces, and one-sided multiple potentials. In the case when we deal with operators defined on bounded sets, the established conditions are simultaneously necessary and sufficient for appropriate trace inequalities. The derived results are new even for multiple Riesz potential operators defined on the product of Euclidean spaces.


2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Nina Danelia ◽  
Vakhtang Kokilashvili

AbstractIn this paper we establish direct and inverse theorems on approximation by trigonometric polynomials for the functions of the closure of the variable exponent Lebesgue space in the variable exponent grand Lebesgue space.


Sign in / Sign up

Export Citation Format

Share Document