scholarly journals PREPARATION AND CHARACTERIZATION OF MAGNESIUM/ALUMINIUM LAYERED DOUBLE HYDROXIDE AS FILLER IN LOW-DENSITY POLYETHYLENE COMPOSITE

Author(s):  
NUR ATHIRAH ZULKIFLI ◽  
◽  
ABDULLAH MOHD AIDIL ADHHA ◽  
MAZIDAH MAMAT
2019 ◽  
Vol 27 (5) ◽  
pp. 287-298
Author(s):  
Xincheng Guo ◽  
Mengqi Tang ◽  
Na Wang ◽  
Lingtong Li ◽  
Yifan Wu ◽  
...  

Organically modified layered double hydroxide (OM-LDH) was synthesized via anion exchange reaction and potassium monolauryl phosphate (MAPK) was used as an intercalator. The OM-LDH nanofillers were embedded into low-density polyethylene/ethylene–vinyl acetate (LDPE/EVA) via melt blending process which provided LDPE/EVA/OM-LDH nanocomposites. The structure and properties of the fabricated samples were characterized through Fourier transform infrared spectroscopy, X-ray diffraction techniques, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and tensile testing. The results showed that the organic anion was intercalated into the interlayer region of LDH and enlarged the interlayer distance. The TGA results of the nanocomposites showed significantly improved thermal stability at a higher temperature when containing 6 wt% OM-LDH due to the good dispersion of OM-LDH in the matrix. The DSC data indicated that the degree of crystallinity was increased obviously due to the incorporation of OM-LDH in the matrix. The formation of organic side chains on the OM-LDH surface also contributed to an improvement in the interfacial adhesion, resulting in enhanced tensile strength and elongation at break compared with LDH.


2021 ◽  
Vol 11 (8) ◽  
pp. 3540
Author(s):  
Numfor Linda Bih ◽  
Assia Aboubakar Mahamat ◽  
Jechonias Bidossèssi Hounkpè ◽  
Peter Azikiwe Onwualu ◽  
Emmanuel E. Boakye

The quantity of polymer waste in our communities is increasing significantly. It is therefore necessary to consider reuse or recycling waste to avoid an increase in the risk to public health. This project is aimed at using pulverized low-density polyethylene (LDPE) waste as a source to reinforce and improve compressive strength, and to reduce the water absorption of geopolymer ceramics (GC). Clay:LDPE composition consisting of 5%, 10%, and 15% LDPE was geopolymerized with an NaOH/Na2SiO3 solution and cured at 30 °C and 50 °C. Characterization of the geopolymer samples was carried out using XRF and XRD. The microstructure was analyzed by SEM and chemical bonding by FTIR. The SEM micrographs showed LDPE particle pull-out on the geopolymer ceramics’ fracture surface. The result showed that the compressive strength increases with the addition of pulverized polymer waste compared to the controlled without LDPE addition. Water absorption decreased with an increase in LDPE addition in the geopolymer ceramics composite.


Sign in / Sign up

Export Citation Format

Share Document