scholarly journals INVESTIGATIONS OF ELECTROWEAK SYMMETRY BREAKING MECHANISM FOR HIGGS BOSON DECAYS INTO FOUR FERMIONS

2020 ◽  
pp. 8-12
Author(s):  
T.V. Obikhod ◽  
E.A. Petrenko

Models with extended Higgs boson sectors are of prime importance for investigating the mechanism of electroweak symmetry breaking for Higgs decays into four fermions and for Higgs-production in association with a vector bosons. In the framework of the Two-Higgs-Doublet Model using two scenarios obtained from the experimental measurements we presented next-to-leading-order results on the four-fermion decays of light CP-even Higgs boson, h → 4f. With the help of Monte Carlo program Prophecy 4f 3.0, we calculated the values Γ = ΓEW/(ΓEW + ΓSM) and Γ = ΓEW+QCD/(ΓEW+QCD + ΓSM) for Higgs boson decay channels H → νµµeνe, µµee, eeee. We didn’t find significant difference when accounting QCD corrections to EW processes in the decay modes of Higgs boson. Using computer programs Pythia 8.2 and FeynHiggs we calculated the following values: σ(V BH)BR(H → ZZ) and σ(V BF)BR(H → WW) for VBF production processes, σ(ggH)BR(H → WW) and σ(ggH)BR(H → ZZ) for gluon fusion production process at 13 and 14 TeV and found good agreement with experimental data.

2010 ◽  
Vol 25 (06) ◽  
pp. 423-429 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs-like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT–ETC sector and the other produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson is the associated production with a gauge boson and WW fusion but not the gluon–gluon fusion channel which is substantially suppressed.


2013 ◽  
Vol 28 (02) ◽  
pp. 1330004 ◽  
Author(s):  
ALEKSANDR AZATOV ◽  
JAMISON GALLOWAY

In this review, we discuss methods of parsing direct information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. We review prevalent scenarios for extending the electroweak symmetry breaking sector and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in large hadron collider (LHC) data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts. The most dominant production and decay modes of the Higgs-like state observed in the early data sets have proven to be consistent with predictions of the Higgs boson of the Standard Model, though interesting directions in subdominant channels still exist and will require our careful attention in further experimental tests. Slightly anomalous rates in certain channels at the early LHC have spurred effort in model building and spectra analyses of particular theories, and we discuss these developments in some detail. Finally, we highlight some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.


2012 ◽  
Vol 27 (28) ◽  
pp. 1230030 ◽  
Author(s):  
JUNG CHANG ◽  
KINGMAN CHEUNG ◽  
PO-YAN TSENG ◽  
TZU-CHIANG YUAN

The new particle around 125 GeV observed at the Large Hadron Collider (LHC) is almost consistent with the standard model (SM) Higgs boson, except that the diphoton decay mode may be excessive. We summarize a number of possibilities. While at the LHC the dominant production mechanism for the Higgs boson of SM and some other extensions is via the gluon fusion process, the alternative vector-boson fusion (VBF) is more sensitive to electroweak symmetry breaking. Using the well-known dijet-tagging technique to single out the VBF mechanism, we investigate potential of VBF to discriminate a number of models suggested to give an enhanced inclusive diphoton production rate.


2016 ◽  
Vol 31 (11) ◽  
pp. 1650065
Author(s):  
Pham Quang Hung ◽  
Nguyen Nhu Le

We present the Higgs mechanism in the context of the EW-scale [Formula: see text] model in which electroweak symmetry is dynamically broken by condensates of mirror quark and right-handed neutrino through the exchange of one fundamental Higgs doublet and one fundamental Higgs triplet, respectively. The formation of these condensates is dynamically investigated by using the Schwinger–Dyson approach. The occurrence of these condensates will give rise to the rich Higgs spectrum. In addition, the VEVs of Higgs fields is also discussed in this dynamical phenomenon.


1996 ◽  
Vol 54 (9) ◽  
pp. 5855-5865 ◽  
Author(s):  
Marco A. Díaz ◽  
Tonnis A. ter Veldhuis ◽  
Thomas J. Weiler

2009 ◽  
Vol 24 (21) ◽  
pp. 1631-1648 ◽  
Author(s):  
RADOVAN DERMÍŠEK

This review provides an elementary discussion of electroweak symmetry breaking in the minimal and the next-to-minimal supersymmetric models with the focus on the fine-tuning problem — the tension between natural electroweak symmetry breaking and the direct search limit on the Higgs boson mass. Two generic solutions of the fine-tuning problem are discussed in detail: models with unusual Higgs decays; and models with unusual pattern of soft supersymmetry breaking parameters.


Sign in / Sign up

Export Citation Format

Share Document