scholarly journals Testing electroweak symmetry breaking through gluon fusion at pp colliders

1991 ◽  
Vol 67 (17) ◽  
pp. 2256-2259 ◽  
Author(s):  
J. Bagger ◽  
S. Dawson ◽  
G. Valencia
2010 ◽  
Vol 25 (06) ◽  
pp. 423-429 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs-like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT–ETC sector and the other produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson is the associated production with a gauge boson and WW fusion but not the gluon–gluon fusion channel which is substantially suppressed.


2020 ◽  
pp. 8-12
Author(s):  
T.V. Obikhod ◽  
E.A. Petrenko

Models with extended Higgs boson sectors are of prime importance for investigating the mechanism of electroweak symmetry breaking for Higgs decays into four fermions and for Higgs-production in association with a vector bosons. In the framework of the Two-Higgs-Doublet Model using two scenarios obtained from the experimental measurements we presented next-to-leading-order results on the four-fermion decays of light CP-even Higgs boson, h → 4f. With the help of Monte Carlo program Prophecy 4f 3.0, we calculated the values Γ = ΓEW/(ΓEW + ΓSM) and Γ = ΓEW+QCD/(ΓEW+QCD + ΓSM) for Higgs boson decay channels H → νµµeνe, µµee, eeee. We didn’t find significant difference when accounting QCD corrections to EW processes in the decay modes of Higgs boson. Using computer programs Pythia 8.2 and FeynHiggs we calculated the following values: σ(V BH)BR(H → ZZ) and σ(V BF)BR(H → WW) for VBF production processes, σ(ggH)BR(H → WW) and σ(ggH)BR(H → ZZ) for gluon fusion production process at 13 and 14 TeV and found good agreement with experimental data.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 312
Author(s):  
Wei-Shu Hou

The 125 GeV boson is quite consistent with the Higgs boson of the Standard Model (SM), but there is a challenge from Anderson as to whether this particle is in the Lagrangian. As Large Hadron Collider (LHC) Run 2 enters its final year of running, we ought to reflect and make sure we have gotten everything right. The ATLAS and CMS combined Run 1 analysis claimed a measurement of 5.4σ vector boson fusion (VBF) production which is consistent with SM, which seemingly refutes Anderson. However, to verify the source of electroweak symmetry breaking (EWSB), we caution that VBF measurement is too important for us to be imprudent in any way, and gluon–gluon fusion (ggF) with similar tag jets must be simultaneous measured, which should be achievable in LHC Run 2. The point is to truly test the dilaton possibility—the pseudo-Goldstone boson of scale invariance violation. We illustrate EWSB by dynamical mass generation of a sequential quark doublet (Q) via its ultrastrong Yukawa coupling and argue how this might be consistent with a 125 GeV dilaton, D. The ultraheavy 2mQ≳4–5 TeV scale explains the absence of New Physics so far, while the mass generation mechanism shields us from the UV theory for the strong Yukawa coupling. Collider and flavor physics implications are briefly touched upon. Current Run 2 analyses show correlations between the ggF and VBF measurements, but the newly observed tt¯H production at LHC poses a challenge.


2012 ◽  
Vol 27 (28) ◽  
pp. 1230030 ◽  
Author(s):  
JUNG CHANG ◽  
KINGMAN CHEUNG ◽  
PO-YAN TSENG ◽  
TZU-CHIANG YUAN

The new particle around 125 GeV observed at the Large Hadron Collider (LHC) is almost consistent with the standard model (SM) Higgs boson, except that the diphoton decay mode may be excessive. We summarize a number of possibilities. While at the LHC the dominant production mechanism for the Higgs boson of SM and some other extensions is via the gluon fusion process, the alternative vector-boson fusion (VBF) is more sensitive to electroweak symmetry breaking. Using the well-known dijet-tagging technique to single out the VBF mechanism, we investigate potential of VBF to discriminate a number of models suggested to give an enhanced inclusive diphoton production rate.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


2016 ◽  
Vol 31 (11) ◽  
pp. 1650065
Author(s):  
Pham Quang Hung ◽  
Nguyen Nhu Le

We present the Higgs mechanism in the context of the EW-scale [Formula: see text] model in which electroweak symmetry is dynamically broken by condensates of mirror quark and right-handed neutrino through the exchange of one fundamental Higgs doublet and one fundamental Higgs triplet, respectively. The formation of these condensates is dynamically investigated by using the Schwinger–Dyson approach. The occurrence of these condensates will give rise to the rich Higgs spectrum. In addition, the VEVs of Higgs fields is also discussed in this dynamical phenomenon.


2022 ◽  
Vol 2022 (01) ◽  
pp. 022
Author(s):  
Nina K. Stein ◽  
William H. Kinney

Abstract We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on r and n S, including post-inflationary history of the universe. We find that, for conventional post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater than 95% confidence out by current data. If we assume protracted reheating characterized by w̅>1/3, Natural Inflation can be brought into agreement with current observational constraints. However, bringing unmodified Natural Inflation into the 68% confidence region requires values of T re below the scale of electroweak symmetry breaking. The addition of a SHOES prior on the Hubble Constant H 0 only worsens the fit.


Sign in / Sign up

Export Citation Format

Share Document