scholarly journals EXPLICIT FORM FOR THE FIRST INTEGRAL AND LIMIT CYCLES OF A CLASS OF PLANAR KOLMOGOROV SYSTEMS

2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 1-11
Author(s):  
Rachid Boukoucha

In this paper we characterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +P\left( x,y\right) \exp \left( \dfrac{C\left( x,y\right) }{D\left( x,y\right) }\right) \right) , \\ \\ y^{\prime }=y\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +Q\left( x,y\right) \exp \left( \dfrac{V\left( x,y\right) }{W\left( x,y\right) }\right) \right) , \end{array} \right. \end{equation*} where $A\left( x,y\right)$, $B\left( x,y\right)$, $C\left( x,y\right)$, $D\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $R\left(x,y\right)$, $V\left( x,y\right)$, $W\left( x,y\right)$ are homogeneous polynomials of degree $a$, $a$, $b$, $b$, $n$, $n$, $m$, $c$, $c$, respectively. Concrete example exhibiting the applicability of our result is introduced.

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1736
Author(s):  
Jaume Llibre

In many problems appearing in applied mathematics in the nonlinear ordinary differential systems, as in physics, chemist, economics, etc., if we have a differential system on a manifold of dimension, two of them having a first integral, then its phase portrait is completely determined. While the existence of first integrals for differential systems on manifolds of a dimension higher than two allows to reduce the dimension of the space in as many dimensions as independent first integrals we have. Hence, to know first integrals is important, but the following question appears: Given a differential system, how to know if it has a first integral? The symmetries of many differential systems force the existence of first integrals. This paper has two main objectives. First, we study how to compute first integrals for polynomial differential systems using the so-called Darboux theory of integrability. Furthermore, second, we show how to use the existence of first integrals for finding limit cycles in piecewise differential systems.


2017 ◽  
Vol 5 (2) ◽  
pp. 232
Author(s):  
Ahmed M. Hussien

The main purpose of this paper is to study the existence of polynomial inverse integrating factor and first integral, and non-existence of limit cycles for all systems. Furthermore, we consider some applications.


2018 ◽  
Vol 28 (06) ◽  
pp. 1850078 ◽  
Author(s):  
Pei Yu ◽  
Maoan Han ◽  
Jibin Li

In the two articles in Appl. Math. Comput., J. Giné [2012a, 2012b] studied the number of small limit cycles bifurcating from the origin of the system: [Formula: see text], [Formula: see text], where [Formula: see text] and [Formula: see text] are homogeneous polynomials of degree [Formula: see text]. It is shown that the maximal number of the small limit cycles, denoted by [Formula: see text], satisfies [Formula: see text] for [Formula: see text]; and [Formula: see text], [Formula: see text]. It seems that the correct answer for their case [Formula: see text] should be [Formula: see text]. In this paper, we apply Hopf bifurcation theory and normal form computation, and perturb the isolated, nondegenerate center (the origin) to prove that [Formula: see text] for [Formula: see text]; and [Formula: see text] for [Formula: see text], which improve Giné’s results with one more limit cycle for each case.


2021 ◽  
Vol 2021 (1) ◽  
pp. 1-11
Author(s):  
Rachid Boukoucha

Abstract In this paper we characterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form x ′ = x ( B 1 ( x , y ) ln | A 3 ( x , y ) A 4 ( x , y ) | + B 3 ( x , y ) ln | A 1 ( x , y ) A 2 ( x , y ) | ) , y ′ = y ( B 2 ( x , y ) ln | A 5 ( x , y ) A 6 ( x , y ) | + B 3 ( x , y ) ln | A 1 ( x , y ) A 2 ( x , y ) | ) \matrix{{x' = x\left( {{B_1}\left( {x,y} \right)\ln \left| {{{{A_3}\left( {x,y} \right)} \over {{A_4}\left( {x,y} \right)}}} \right| + {B_3}\left( {x,y} \right)\ln \left| {{{{A_1}\left( {x,y} \right)} \over {{A_2}\left( {x,y} \right)}}} \right|} \right),} \hfill \cr {y' = y\left( {{B_2}\left( {x,y} \right)\ln \left| {{{{A_5}\left( {x,y} \right)} \over {{A_6}\left( {x,y} \right)}}} \right| + {B_3}\left( {x,y} \right)\ln \left| {{{{A_1}\left( {x,y} \right)} \over {{A_2}\left( {x,y} \right)}}} \right|} \right)} \hfill \cr } where A 1 (x, y), A 2 (x, y), A 3 (x, y), A 4 (x, y), A 5 (x, y), A 6 (x, y), B 1 (x, y), B 2 (x, y), B 3 (x, y) are homogeneous polynomials of degree a, a, b, b, c, c, n, n, m respectively. Concrete example exhibiting the applicability of our result is introduced.


1990 ◽  
Vol 108 (1) ◽  
pp. 127-151 ◽  
Author(s):  
James Devlin

In this paper, we develop an abstract formulation of a problem which arises in the investigation of the number of limit cycles of systems of the formwhere p and q are homogeneous polynomials. This is part of the much wider study of Hilbert's sixteenth problem, in which information is sought about the number of limit cycles of systems of the formwhere P and Q are polynomials, and their possible configurations.


Sign in / Sign up

Export Citation Format

Share Document