scholarly journals CLASSICAL MECHANICS AND CONTEMPORARY FUNDAMENTAL PHYSICAL RESEARCH

2019 ◽  
Vol 20 (2) ◽  
pp. 212-237
Author(s):  
Marián Ambrozy ◽  
Miloš Lokajíček ◽  
Michal Valčo
Author(s):  
Harrison Crecraft

The prevailing interpretations of physics are based on deeply entrenched assumptions, rooted in classical mechanics. Logical implications include: the denial of entropy and irreversible change as fundamental physical properties; the inability to explain random quantum measurements or nonlocality without untestable metaphysical implications; and the inability to define complexity or explain its evolution. We propose a conceptual model based on empirically justifiable assumptions. The WYSIWYG Conceptual Model (WCM) assumes no hidden properties: “What You can See Is What You Get.” The WCM defines a system’s state in the context of its actual ambient background, and it extends existing models of physical reality by defining entropy and exergy as objective contextual properties of state. The WCM establishes the irreversible production of entropy and the Second law of thermodynamics as a fundamental law of physics. It defines a dissipative system’s measurable rate of internal work as an objective measure of stability of its dissipative process. A dissipative system can follow either of two paths toward higher stability: it can 1) increase its rate of exergy supply or 2) utilize existing exergy supplies better to increase its internal work rate and functional complexity. These paths guide the evolution of both living and non-living systems.


Kobunshi ◽  
2004 ◽  
Vol 53 (9) ◽  
pp. 709-709
Author(s):  
Takuhei NOSE

Author(s):  
Harrison Crecraft

The prevailing interpretations of physics are based on deeply entrenched assumptions, rooted in classical mechanics. Logical implications include: the denial of entropy and irreversible change as fundamental physical properties; the inability to explain random quantum measurements or nonlocality without untestable and implausible metaphysical implications; and the inability to define complexity or explain its evolution. We propose a conceptual model based on empirically justifiable assumptions. The WYSIWYG Conceptual Model (WCM) assumes no hidden properties: “What You can See Is What You Get.” The WCM defines a system’s state in the context of its actual ambient background, and it extends existing models of physical reality by defining entropy and exergy as objective contextual properties of state. The WCM establishes the irreversible production of entropy and the Second law of thermodynamics as a fundamental law of physics. It defines a dissipative system’s measurable rate of internal work as an objective measure of stability of its dissipative process. A dissipative system can follow either of two paths toward higher stability: it can 1) increase its rate of exergy supply (and maximize entropy production) or 2) utilize existing exergy supplies better to increase its internal work rate and functional complexity. These paths guide the evolution of both living and non-living systems.


Author(s):  
Robert Wilson

In this paper, the classical Bohr’s model of the hydrogen atom has been revisited. Two values of fundamental physical properties of an electron in the hydrogen atom has been identified. These physical properties ( & ) are constant in nature. The aim for the review was to contribute to the solution of disagreement between the Bohr’s wavelength ( ) and the Balmer’s experimental observation ( ) for the emission spectrum of hydrogen atom. There are two other constants  and  that were identified in the Bohr’s equation of the hydrogen atom. The four fundamental physical constants are intrinsic properties of an electron and can be applied to multi-electron system. They can also be obtained from Schrodinger’s equation for hydrogen atom at steady state. These constants may be subjected to scrutiny for their determination for better understanding. Also, since Bohr’s model of hydrogen atom is based on classical mechanics, this paper has provided an alternate method of solving simple problems in atomic physics under Bohr’s model to aid good mental picture of hydrogen atom to scientists.


Sign in / Sign up

Export Citation Format

Share Document