Theoretical Simulation of Backscattering Electron Coefficient for SixGe1-x/Si Heterostructure as a Function of Primary Electron Beam Energy and Ge Concentration

2020 ◽  
Vol 13 (2) ◽  
pp. 137-147

Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line. Furthermore, the shape and height of peak and dip broadening depend on the primary electron energy and incidence position with respect to the interfacing line. The last feature is that the spatial resolution of the backscattered signal at the interfacing line is improving by decreasing the primary electron energy (below 5 keV) and the shared element (Si) concentration. On the other hand, a poor compositional contrast has been shown at low primary electron energy below 5 keV. For energies above 5 keV, the spatial resolution becomes weak. These results can be explained by the behavior of the incident electrons inside the solid (interaction volume), especially at a distance close to the interfacing line and their chance to backscatter out of the sample. In general, a good compositional contrast with a high spatial resolution can be achieved at primary electron energy equal to 1 keV. Keywords: Monte Carlo model, Backscattering electron coefficient, Si-Ge/Si, Elastic scattering, Spatial resolution, Compositional contrast.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-777-C7-778
Author(s):  
G. Fournier ◽  
J. Bonnet ◽  
J. Bridet ◽  
J. Fort ◽  
D. Pigache


2020 ◽  
Vol 62 (5) ◽  
pp. 055004 ◽  
Author(s):  
Guangyu Li ◽  
Quratul Ain ◽  
Song Li ◽  
Muhammad Saeed ◽  
Daniel Papp ◽  
...  


2001 ◽  
Vol 79 (2-3) ◽  
pp. 153-162 ◽  
Author(s):  
E Träbert ◽  
P Beiersdorfer ◽  
K B Fournier ◽  
S B Utter ◽  
K L Wong

Systematic variation of the electron-beam energy in an electron-beam ion trap has been employed to produce soft-X-ray spectra (20 to 60 Å) of Au with well-defined maximum charge states ranging from Br- to Co-like ions. Guided by large-scale relativistic atomic structure calculations, the strongest Δn = 0 (n = 4 to n' = 4) transitions in Rb- to Cu-like ions (Au42+ – Au50+) have been identified. PACS Nos.: 32.30Rj, 39.30+w, 31.50+w, 32.20R



Nature ◽  
2021 ◽  
Vol 599 (7886) ◽  
pp. 565-570
Author(s):  
M. Khachatryan ◽  
A. Papadopoulou ◽  
A. Ashkenazi ◽  
F. Hauenstein ◽  
A. Nambrath ◽  
...  


Vacuum ◽  
1988 ◽  
Vol 38 (11) ◽  
pp. 1041-1043 ◽  
Author(s):  
A Balasiński ◽  
A Jakubowski ◽  
A Świt


1982 ◽  
Vol 13 ◽  
Author(s):  
D. Barbierf ◽  
M. Baghdadi ◽  
A. Laugier ◽  
A. Cachard

ABSTRACTIn this work Pulsed Electron Beam Annealing has been used to Sctivaye As implanted in (100) and (111) silicon (140 keV- 1015 cm−2 ). With a selected electron beam energy deposition profile excellent regrowth layer quality and As activation has been obtained in the 1.2–1.4 J/cm2 fluence range. As redistribution is conistent with the melting model assuming a diffusivity of 10−4 cm2/s in liquid silicon. As losses might slightly reduce the carrier concentration near the surface in the case of (100) silicon. However a shallow and highly active N+ layer have been achieved with optimized PEBA conditions.



1997 ◽  
Vol 46 (2) ◽  
pp. 279
Author(s):  
YANG ZHEN-HUA ◽  
WU YU-PU


1985 ◽  
Vol 25 (4-6) ◽  
pp. 807-815
Author(s):  
E.A. Abramyan ◽  
B.A. Altercop ◽  
G.D. Kuleshov


2010 ◽  
Vol 57 (2(1)) ◽  
pp. 320-324 ◽  
Author(s):  
Jaehoon Kim ◽  
Seong Hoon Yoo ◽  
Geun Ju Kim ◽  
Jong Uk Kim


Sign in / Sign up

Export Citation Format

Share Document