electron beam ion trap
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 24)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Michael Hahn ◽  
Thusitha Arthanayaka ◽  
Peter Beiersdorfer ◽  
Gregory V. Brown ◽  
Daniel W. Savin

Author(s):  
Roshani Silwal ◽  
Dipti Dipti ◽  
Endre Takacs ◽  
Joan M. Dreiling ◽  
Samuel C Sanders ◽  
...  

Abstract The M-intrashell spectra from Co-like Yb43+ through Na-like Yb59+ ions produced in an electron beam ion trap (EBIT) at the National Institute of Standards and Technology have been studied in the extreme ultraviolet (EUV) range. A few N-intrashell transitions for Co-like Yb43+ and Fe-like Yb44+ are also reported. The EUV radiation was observed with a flat-field grazing incidence spectrometer in the wavelength region of about 7.5 nm to 26.2 nm. The electron beam energies were varied between 3.6 keV and 18 keV to produce the ionization stages of interest. The line identifications were based on the large-scale simulations of the EBIT plasma emission using the non-Maxwellian collisional-radiative code NOMAD. A total of 76 previously unobserved spectral lines corresponding to electric-dipole and magnetic-dipole transitions in the above mentioned ions were identified and discussed. In particular, our accurate wavelength of 24.3855±0.0005 nm for a magnetic-dipole (M1) transition in the ground configuration of Co-like ion presents a solid benchmark for comparisons with the most advanced theories of atomic structure.


Author(s):  
Yajing Li ◽  
Yintao Wang ◽  
Junyu Fan ◽  
Ran Si ◽  
Jiguang Li ◽  
...  

Abstract The 4s24p 2P3/2 – 2P1/2 magnetic dipole transition in Ga-like ions is interested in developing of high precise highly charged ion clock [Phys. Rev. A, 99, 02213(2019)]. In this work, we present direct observations of the transition in Mo11+ and Ru13+ ions at an electron beam ion trap. Internal and external calibration methods are used for determining the wavelength of the Mo11+ and Ru13+ lines, respectively. Both measurements reach precision levels of a few ppm. Compared with the available values, the current results significantly improve the experimental uncertainty.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 63
Author(s):  
Shota Era ◽  
Daiji Kato ◽  
Hiroyuki A. Sakaue ◽  
Toshiki Umezaki ◽  
Nobuyuki Nakamura ◽  
...  

Forbidden transitions in the near-UV and visible wavelength of highly charged tungsten (W) ions are potentially useful as novel tungsten diagnostics means of fusion plasmas. Emission lines in 290–360 nm from Wq+ ions interacting with an electron beam of 540–1370 eV are measured, using a compact electron-beam-ion-trap. The charge states of 64 lines are identified as W20+–W29+. A magnetic-dipole (M1) line of W29+ between the excited states (4d84f)[(4d5/2−2)44f7/2]13/2→[(4d5/2−2)44f5/2]13/2 is newly identified; the wavelength is determined as 351.03(10) nm in air. The theoretical wavelength calculated using the multiconfiguration Dirac–Hartree–Fock method is in a good agreement with the measurement.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 46
Author(s):  
Chihiro Suzuki ◽  
Fumihiro Koike ◽  
Izumi Murakami ◽  
Tetsutarou Oishi ◽  
Naoki Tamura

Extreme ultraviolet (EUV) spectra of highly charged praseodymium (Pr) and neodymium (Nd) ions have been investigated in optically thin high-temperature plasmas produced in the Large Helical Device (LHD), a magnetically confined torus device for fusion research. Discrete spectral lines emitted mainly from highly charged ions having 4s or 4p outermost electrons were observed in plasmas with electron temperatures of 0.8–1.8 keV. Most of the isolated lines of Ga-like to Cu-like Nd ions were identified by a comparison with the recent data recorded in an electron beam ion trap (EBIT). The isolated lines of Pr ions corresponding to the identified lines of Nd ions were easily assigned from a similarity of the spectral feature for these two elements. As a result, some of the lines of Pr ions have been newly identified experimentally for the first time in this study.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 45
Author(s):  
Elmar Träbert

Beam–foil spectroscopy offers the efficient excitation of the spectra of a single element as well as time-resolved observation. Extreme-ultraviolet (EUV) beam–foil survey and detail spectra of Ti, Fe, Ni, and Cu are presented, as well as survey spectra of Fe and Ni obtained at an electron beam ion trap. Various details are discussed in the context of line intensity ratios, yrast transitions, prompt and delayed spectra, and intercombination transitions.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Q. Lu ◽  
C. L. Yan ◽  
J. Meng ◽  
G. Q. Xu ◽  
Y. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document