scholarly journals RESEARCH ON RADON (222Rn) CONTENT IN DRINKING-WATER SAMPLES COLLECTED FROM SIBIU COUNTY

2021 ◽  
Vol 10 (20) ◽  
pp. 212-218
Author(s):  
Cecilia Ionela Tăban ◽  
Simona Oancea

The isotope radon (222Rn), an inert water-soluble gas that may contaminate water, represents a potential risk for human health, including cancer. The present study reports the evaluation of the 222Rn concentration in drinking-water samples collected in 2020 from 10 sources located in Sibiu County, as measured using the pulse ionization chamber. Values of 222Rn varied from 0.0549 to 37.4770 Bq/l, with an average of 4.586 Bq/l. These values were below the maximum level of 100 Bq/l recommended by WHO and EU Directive/Euratom. With the exception of the sample from groundwater, the others showed 222Rn values below the maximum level of 11.1 Bq/l, as recommended by US EPA. In the case of impermeable soils, this radionuclide floats inside the cracks until it reaches the atmospheric air, so it is harmful to human health both in water and in the air. Evaluation of radon in water, in particular from groundwater sources becomes essential for the management of remedial solutions.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
András Székács ◽  
Mária Mörtl ◽  
Béla Darvas

Over 2000 surface, ground and raw drinking water samples have been analyzed in the frame of different monitoring projects in Hungary and watercourses in neighboring countries between 1990 and 2015. Effects of pesticide contamination on ecological farming and drinking water supply have been assessed. Main water pollutant ingredients of agricultural origin in Hungary are herbicides related to maize production. After EU pesticide re-registration, diazinon, atrazine, and trifluralin gradually disappeared as contaminants. High levels of water soluble pollutants (e.g., acetochlor) in surface water result in temporarily enhanced levels in raw drinking water as well. Extreme levels observed for herbicide residues were of agrochemical industrial origin.


2013 ◽  
Vol 14 (4) ◽  
pp. 393-398

The occurrence of trihalomethanes (THMs) was studied in the drinking water samples from urban water supply network of Karachi city that served more than 18 million people. Drinking water samples were collected from 58 locations in summer (May-August) and winter (November-February) seasons. The major constituent of THMs detected was chloroform in winter (92.34%) and summer (93.07%), while the other THMs determined at lower concentrations. Summer and winter concentrations of total THMs at places exceed the levels regulated by UEPA (80 μg l-1) and WHO (100 μg l-1). GIS linked temporal variability in two seasons showed significantly higher median concentration (2.5%-23.06%) of THMs compared to winter.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


2015 ◽  
Vol 3 (1) ◽  
pp. e983384 ◽  
Author(s):  
Marize de Lm Solano ◽  
Cassiana C Montagner ◽  
Carolina Vaccari ◽  
Wilson F Jardim ◽  
Janete A Anselmo-Franci ◽  
...  

2008 ◽  
Vol 277 (1) ◽  
pp. 155-159 ◽  
Author(s):  
I. Outola ◽  
S. Nour ◽  
H. Kurosaki ◽  
K. Inn ◽  
J. La Rosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document