scholarly journals The Effectivity of Anodal Transcranial Direct Current Stimulation in Enhancing Wrist Extensor Muscle Activation After Stroke: A Randomized Trial

Author(s):  
Anindya K Zahra ◽  
Meisy Andriana ◽  
Lydia Arfianti ◽  
I Putu Alit Pawana ◽  
Damayanti Tinduh
2011 ◽  
Vol 105 (6) ◽  
pp. 2937-2942 ◽  
Author(s):  
Alana B. McCambridge ◽  
Lynley V. Bradnam ◽  
Cathy M. Stinear ◽  
Winston D. Byblow

Proximal upper limb muscles are represented bilaterally in primary motor cortex. Goal-directed upper limb movement requires precise control of proximal and distal agonist and antagonist muscles. Failure to suppress antagonist muscles can lead to abnormal movement patterns, such as those commonly experienced in the proximal upper limb after stroke. We examined whether noninvasive brain stimulation of primary motor cortex could be used to improve selective control of the ipsilateral proximal upper limb. Thirteen healthy participants performed isometric left elbow flexion by contracting biceps brachii (BB; agonist) and left forearm pronation (BB antagonist) before and after 20 min of cathodal transcranial direct current stimulation (c-tDCS) or sham tDCS of left M1. During the tasks, motor evoked potentials (MEPs) in left BB were acquired using single-pulse transcranial magnetic stimulation of right M1 150–270 ms before muscle contraction. As expected, left BB MEPs were facilitated before flexion and suppressed before pronation. After c-tDCS, left BB MEP amplitudes were reduced compared with sham stimulation, before pronation but not flexion, indicating that c-tDCS enhanced selective muscle activation of the ipsilateral BB in a task-specific manner. The potential for c-tDCS to improve BB antagonist control correlated with BB MEP amplitude for pronation relative to flexion, expressed as a selectivity ratio. This is the first demonstration that selective muscle activation in the proximal upper limb can be improved after c-tDCS of ipsilateral M1 and that the benefits of c-tDCS for selective muscle activation may be most effective in cases where activation strategies are already suboptimal. These findings may have relevance for the use of tDCS in rehabilitation after stroke.


2014 ◽  
Vol 112 (6) ◽  
pp. 1505-1515 ◽  
Author(s):  
Alexandra Lackmy-Vallée ◽  
Wanalee Klomjai ◽  
Bernard Bussel ◽  
Rose Katz ◽  
Nicolas Roche

Transcranial direct current stimulation (tDCS) is used as a noninvasive tool to modulate brain excitability in humans. Recently, several studies have demonstrated that tDCS applied over the motor cortex also modulates spinal neural network excitability and therefore can be used to explore the corticospinal control acting on spinal neurons. Previously, we showed that reciprocal inhibition directed to wrist flexor motoneurons is enhanced during contralateral anodal tDCS, but it is likely that the corticospinal control acting on spinal networks controlling wrist flexors and extensors is not similar. The primary aim of the study was to explore the effects of anodal tDCS on reciprocal inhibition directed to wrist extensor motoneurons. To further examine the supraspinal control acting on the reciprocal inhibition between wrist flexors and extensors, we also explored the effects of the tDCS applied to the ipsilateral hand motor area. In healthy volunteers, we tested the effects induced by sham and anodal tDCS on reciprocal inhibition pathways innervating wrist muscles. Reciprocal inhibition directed from flexor to extensor muscles and the reverse situation, i.e., reciprocal inhibition, directed from extensors to flexors were studied in parallel with the H reflex technique. Our main finding was that contralateral anodal tDCS induces opposing effects on reciprocal inhibition: it decreases reciprocal inhibition directed from flexors to extensors, but it increases reciprocal inhibition directed from extensors to flexors. The functional result of these opposite effects on reciprocal inhibition seems to favor wrist extension excitability, suggesting an asymmetric descending control onto the interneurons that mediate reciprocal inhibition.


2018 ◽  
Vol 201 ◽  
pp. 329-336 ◽  
Author(s):  
Sanne Koops ◽  
Jan Dirk Blom ◽  
Ouarda Bouachmir ◽  
Margot I. Slot ◽  
Bas Neggers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document