scholarly journals Current trends in anticancer drug prototype in vitro pharmacology: bibliometric analysis 2019–2021

2021 ◽  
Author(s):  
PV Ershov ◽  
AS Makarova

Identification of novel low molecular weight compounds with antitumor activity is the first important step towards the development of candidate drugs and a popular trend in in vitro pharmacology. The aim of the study was to assess the key trends and rank the scientific priorities in anticancer drug design using bibliometric analysis. The protocol involved using the panel of bibliographic databases (PubMed, Scopus, Cortellis) and analytical web-based tools PubChem, FACTA +, ClustVis, Reaxys, PathwayStudio and VOSviewer software to review a sample of 1657 papers issued 2020–2021.The work was also focused on 70 new promising basic structures and derivatives targeted at inhibiting both individual pro-tumor proteins and signaling cascades. It was found that serine-threonine protein kinases, receptor tyrosine kinases, DNA topoisomerases and tubulins as well as signaling pathways PI3K, mTOR, AKT1, STAT3, HIF-1a, and p53 account for up to 60% of the total structure of cellular targets for the design of anticancer drugs. The increasing scientific interest in innovative inhibitors of tumor-associated protein complexes, transcription factors and metabolic enzymes has been found. The compounds, which belong to heterocycles, glycosides, quinones and terpenes, were mentioned in 71% of papers as the basic structures for antitumor derivatives design. Papers, published in 2019, in which the compounds, such as lapachone, luteolin, quercetin, monastrol, and crisosplenol D are studied in the context of the design of new drug prototypes, have the highest citation rate. The systematic bibliometric approach involving the use of a panel of analytical resources makes it possible to assess R&D trends and scientific priorities in anticancer drug design, thus organically complementing the classic reviews in periodicals.

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Pavel V. Ershov ◽  
Yuri V. Mezentsev ◽  
Alexis S. Ivanov

The identification of disease-related protein-protein interactions (PPIs) creates objective conditions for their pharmacological modulation. The contact area (interfaces) of the vast majority of PPIs has some features, such as geometrical and biochemical complementarities, “hot spots”, as well as an extremely low mutation rate that give us key knowledge to influence these PPIs. Exogenous regulation of PPIs is aimed at both inhibiting the assembly and/or destabilization of protein complexes. Often, the design of such modulators is associated with some specific problems in targeted delivery, cell penetration and proteolytic stability, as well as selective binding to cellular targets. Recent progress in interfacial peptide design has been achieved in solving all these difficulties and has provided a good efficiency in preclinical models (in vitro and in vivo). The most promising peptide-containing therapeutic formulations are under investigation in clinical trials. In this review, we update the current state-of-the-art in the field of interfacial peptides as potent modulators of a number of disease-related PPIs. Over the past years, the scientific interest has been focused on following clinically significant heterodimeric PPIs MDM2/p53, PD-1/PD-L1, HIF/HIF, NRF2/KEAP1, RbAp48/MTA1, HSP90/CDC37, BIRC5/CRM1, BIRC5/XIAP, YAP/TAZ–TEAD, TWEAK/FN14, Bcl-2/Bax, YY1/AKT, CD40/CD40L and MINT2/APP.


2021 ◽  
pp. 130539
Author(s):  
Serda Kecel-Gunduz ◽  
Yasemin Budama-Kilinc ◽  
Bahar GOK ◽  
Bilge Bicak ◽  
Gizem Akman ◽  
...  

2021 ◽  
Author(s):  
Kari Salokas ◽  
Tiina Öhman ◽  
Xiaonan Liu ◽  
Iftekhar Chowdhury ◽  
Lisa Gawriyski ◽  
...  

Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we used three complementary methods to map the molecular context and substrate profiles of RTKs. We used affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also used kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.


2008 ◽  
Vol 6 (12) ◽  
pp. 43
Author(s):  
J. Stanslas ◽  
S.H. Lim ◽  
S.R. Jada ◽  
S.R. Sagineedu ◽  
N.H. Lajis ◽  
...  

2002 ◽  
Vol 75 (6) ◽  
pp. 613 ◽  
Author(s):  
Stefano Santabarbara ◽  
Ilaria Cazzalini ◽  
Andrea Rivadossi ◽  
Flavio M. Garlaschi ◽  
Giuseppe Zucchelli ◽  
...  

2019 ◽  
Vol 26 (26) ◽  
pp. 5005-5018 ◽  
Author(s):  
Marvin A. Soriano-Ursúa ◽  
Eunice D. Farfán-García ◽  
Simonetta Geninatti-Crich

Background: Despite the historical employment of boron-containing compounds (BCCs) with medicinal purposes, the reported cases of BCC toxicity in humans during the twentieth-century drived us towards a “boron-withdrawal” period. Fortunately, the use of boric acid for specific purposes remains, and the discovery of natural BCCs with biological action attractive for therapeutic purposes as well as the introduction of some new BCCs for clinical use has reactivated the interest in studying the properties of these BCCs. Methods: We carried out a structured search of bibliographic databases for scientific peerreviewed research literature regarding boron toxicity and linked that information to that of BCCs in drug design and development. A deductive qualitative content analysis methodology was applied to analyse the interventions and findings of the included studies using a theoretical outline. Results: This review recapitulates the following on a timeline: the boron uses in medicine, the data known about the toxicological profiles of some BCCs, the pharmacological properties of some BCCs that are employed in cancer and infectious disease therapies, and the known properties of BCCs recently introduced into clinical assays as well as the identification of their structure-activity relationships for toxicity and therapeutic use. Then, we discuss the use of new approaches taking advantage of some toxicological data to identify potent and efficient BCCs for prevention and therapy while limiting their toxic effects. Conclusion: Data for boron toxicity can be strategically used for boron-containing drug design.


Sign in / Sign up

Export Citation Format

Share Document