scholarly journals Clinical efficacy of dietary supplement Cartilox in osteoarthritis

2021 ◽  
Vol 59 (4) ◽  
pp. 450-454
Author(s):  
I. S. Dydykina ◽  
P. S. Kovalenko ◽  
L. V. Menshikova

The paper discusses the results and substantiates the effectiveness of pharmacotherapy for osteoarthritis of the knee joints using a dietary supplement Cartilox, which includes five active substances (type II collagen peptide, Boswellia serrata extract, curcuminoids, piperine and hyaluronic acid).

1996 ◽  
Vol 09 (02) ◽  
pp. 60-5 ◽  
Author(s):  
N. Hope ◽  
P. Ghosh ◽  
S. Collier

SummaryThe aim of this study was to determine the effects of intra-articular hyaluronic acid on meniscal healing. Circular defects, 1.0 mm in diameter, were made in the anterior third of the medial meniscus in rabbits. In one joint, 0.4 ml hyaluronic acid (Healon®) was instilled, and in the contralateral (control) joint, 0.4 ml Ringer’s saline. Four rabbits were killed after four, eight and 12 weeks and the menisci examined histologically. By eight weeks most of the lesions had healed by filling with hyaline-like cartilage. Healing was not improved by hyaluronic acid treatment. The repair tissue stained strongly with alcian blue, and the presence of type II collagen, keratan sulphate, and chondroitin sulphate was demonstrated by immunohistochemical localisation. In contrast to the circular defects, longitudinal incisions made in the medial menisci of a further six rabbits did not show any healing after 12 weeks, indicating that the shape of the lesion largely determined the potential for healing.The effect of hyaluronic acid on meniscal healing was tested in a rabbit model. With one millimeter circular lesions in the medial meniscus, healing by filling with hyalinelike cartilage was not significantly affected by the application of hyaluronic acid intra-articularly at the time of surgery, compared to saline controls, as assessed histologically four, eight and 12 weeks after the operation.


2019 ◽  
Vol 34 (4-5) ◽  
pp. 373-385
Author(s):  
Kuan Wei Lee ◽  
Tang-Ching Kuan ◽  
Ming Wei Lee ◽  
Chen Show Yang ◽  
Lain-Chyr Hwang ◽  
...  

Extracellular matrix has an important part of the role in tissue engineering and regenerative medicine, so it is necessary to understand the various interactions between cells and extracellular matrix. Type II collagen and hyaluronic acid are the major structural components of the extracellular matrix of articular cartilage, and they are involved in fibril formation, entanglement and binding. The aim of this study was to prepare type II collagen fibrils with surface grafted with hyaluronic acid modified at the reducing end. The topographic pattern of type II collagen fibrils showed a significant change after the surface coupling of hyaluronic acid according to atomic force microscopy scanning. The presence of hyaluronic acid on the type II collagen fibrillar surface was confirmed by the specific binding of nanogold labelled with lectin. No significant increase in cell proliferation was detected by a WST-1 assay. According to histochemical examination, the maintenance of the round shape of chondrocytes and increased glycosaminoglycan secretion revealed that these cell pellets with Col II- g-hyaluronic acid molecules contained un-dedifferentiated chondrocytes in vitro. In the mixture with the 220-kDa Col II- g-hyaluronic acid copolymer, the expression of type II collagen and aggrecan genes in chondrocytes increased as demonstrated by real-time polymerase chain reaction analysis. Experimental results show that the amount of hyaluronic acid added during culturing of chondrocytes can maintain the functionality of chondrocytes and thus allow for increased cell proliferation that is suitable for tissue repair of human cartilage.


2011 ◽  
Vol 133 (10) ◽  
Author(s):  
J. W. Ruberti ◽  
J. B. Sokoloff

Articular cartilage is comprised of macromolecules, proteoglycans, with (charged) chondroitin sulfate side-chains attached to them. The proteoglycans are attached to longer hyaluronic acid chains, trapped within a network of type II collagen fibrils. As a consequence of their relatively long persistence lengths, the number of persistence lengths along the chondroitin sulfate and proteoglycan chains is relatively small, and consequently, the retraction times for these side chains are also quite short. We argue that, as a consequence of this, they will not significantly inhibit the reptation of the hyaluronic acid chains. Scaling arguments applied to this model allow us to show that the shortest of the mechanical relaxation times of cartilage, that have been determined by Fyhrie and Barone to be due to reptation of the hyaluronic acid polymers, should have a dependence on the load, i.e., force per unit interface area P, carried by the cartilage, proportional to P3/2.


1999 ◽  
Vol 878 (1 INHIBITION OF) ◽  
pp. 590-593 ◽  
Author(s):  
B. R. FELICE ◽  
C. O. CHICHESTER ◽  
H.-J. BARRACH

1986 ◽  
Vol 103 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
M Takeda ◽  
H Iwata ◽  
S Suzuki ◽  
K S Brown ◽  
K Kimata

The cartilage matrix deficiency (cmd/cmd) mouse fails to synthesize the core protein of cartilage-characteristic proteoglycan (cartilage PG). Chondrocytes from the cmd/cmd cartilage cultured in vitro produced nodules with greatly reduced extracellular matrix. Immunofluorescence staining revealed that the nodules of mutant cells differed from the normal in lacking cartilage PG and in uneven and reduced deposition of type II collagen. Exogenously added cartilage PG prepared from either normal mouse cartilage or Swarm rat chondrosarcoma to the culture medium was incorporated exclusively into the extracellular matrices of the nodules, with a concurrent correction of the abnormal distribution pattern of type II collagen. The incorporation of cartilage PG into the matrix was disturbed by hyaluronic acid or decasaccharide derived therefrom, suggesting that the incorporation process involves the interaction of added proteoglycan with hyaluronic acid. Both the hyaluronic acid-binding region and the protein-enriched core molecule prepared from rat chondrosarcoma cartilage PG could also be incorporated but, unlike the intact cartilage PG, they were distributed equally in the surrounding zones where fibroblast-like cells predominate. The results indicate that the intact form of cartilage PG is required for specific incorporation into the chondrocyte nodules, and further suggest that cartilage PG plays a regulatory role in the assembly of the matrix macromolecules.


Sign in / Sign up

Export Citation Format

Share Document