scholarly journals Analysis of Excess Consumption in College Students by KPAG Method During the COVID-19 Pandemic

2021 ◽  
Vol 2 (1) ◽  
pp. 1-3
Author(s):  
Bin Zhao ◽  
◽  
Jinming Cao ◽  

With the arrival of COVID-19, some areas are under closed management, bringing about changes in the way people consume. It also leads to the excessive consumption of some people, especially college students. In order to give early warning to unreasonable consumption behavior, this study designed KPAG algorithm to give early warning to consumption risk. Using particle swarm optimization (PSO) kernel principal component analysis (KPCA) parameter optimization, optimal polynomial kernel to delete data information, and ant colony genetic algorithm (association) clustering analysis of data dimensionality reduction, according to the consumption behavior of college students are divided into three categories, for the consumption behavior of college students to build an early warning model. Through the classification and verification experiment of real data, the results show that compared with the traditional PCA data fitting method, the accuracy of the model in this paper can reach 90%, which is more reliable than the traditional algorithm, and the accuracy of the model is improved by nearly 20%, which can be used for effective early warning.

Author(s):  
Duo Wang ◽  
Toshihisa Tanaka

Kernel principal component analysis (KPCA) is a kernelized version of principal component analysis (PCA). A kernel principal component is a superposition of kernel functions. Due to the number of kernel functions equals the number of samples, each component is not a sparse representation. Our purpose is to sparsify coefficients expressing in linear combination of kernel functions, two types of sparse kernel principal component are proposed in this paper. The method for solving sparse problem comprises two steps: (a) we start with the Pythagorean theorem and derive an explicit regression expression of KPCA and (b) two types of regularization $l_1$-norm or $l_{2,1}$-norm are added into the regression expression in order to obtain two different sparsity form, respectively. As the proposed objective function is different from elastic net-based sparse PCA (SPCA), the SPCA method cannot be directly applied to the proposed cost function. We show that the sparse representations are obtained in its iterative optimization by conducting an alternating direction method of multipliers. Experiments on toy examples and real data confirm the performance and effectiveness of the proposed method.


2020 ◽  
Vol 17 (4) ◽  
pp. 172988141989688
Author(s):  
Liming Li ◽  
Jing Zhao ◽  
Chunrong Wang ◽  
Chaojie Yan

The multivariate statistical method such as principal component analysis based on linear dimension reduction and kernel principal component analysis based on nonlinear dimension reduction as the modified principal component analysis method are commonly used. Because of the diversity and correlation of robotic global performance indexes, the two multivariate statistical methods principal component analysis and kernel principal component analysis methods can be used, respectively, to comprehensively evaluate the global performance of PUMA560 robot with different dimensions. When using the kernel principal component analysis method, the kernel function and parameters directly have an effect on the result of comprehensive performance evaluation. Because kernel principal component analysis with polynomial kernel function is time-consuming and inefficient, a new kernel function based on similarity degree is proposed for the big sample data. The new kernel function is proved according to Mercer’s theorem. By comparing different dimension reduction effects of principal component analysis method, the kernel principal component analysis method with polynomial kernel function, and the kernel principal component analysis method with the new kernel function, the kernel principal component analysis method with the new kernel function could deal more effectively with the nonlinear relationship among indexes, and its calculation result is more reasonable for containing more comprehensive information. The simulation shows that the kernel principal component analysis method with the new kernel function has the advantage of low time consuming, good real-time performance, and good ability of generalization.


2020 ◽  
pp. 135481661989857 ◽  
Author(s):  
Gang Xie ◽  
Xin Li ◽  
Yatong Qian ◽  
Shouyang Wang

Search query data (SQD) can be helpful in predicting tourism demand by generating web search indexes. However, valuable nonlinear information in SQD may be neglected by researchers. To effectively capture the nonlinear information, we used kernel principal component analysis (KPCA) to extract web search indexes from SQD. Then, several models with KPCA-based web search indexes were developed for tourism demand forecasting. An empirical study was conducted with collected SQD and real data of tourist arrivals at Hong Kong. The results suggest that models with KPCA-based web search indexes are more accurate than other models because of the nonlinear data processing ability of the KPCA and demonstrate that KPCA-based web search indexes can be excellent predictors for tourism demand forecasting.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Shengkun Xie ◽  
Anna T. Lawniczak ◽  
Sridhar Krishnan ◽  
Pietro Lio

We introduce multiscale wavelet kernels to kernel principal component analysis (KPCA) to narrow down the search of parameters required in the calculation of a kernel matrix. This new methodology incorporates multiscale methods into KPCA for transforming multiscale data. In order to illustrate application of our proposed method and to investigate the robustness of the wavelet kernel in KPCA under different levels of the signal to noise ratio and different types of wavelet kernel, we study a set of two-class clustered simulation data. We show that WKPCA is an effective feature extraction method for transforming a variety of multidimensional clustered data into data with a higher level of linearity among the data attributes. That brings an improvement in the accuracy of simple linear classifiers. Based on the analysis of the simulation data sets, we observe that multiscale translation invariant wavelet kernels for KPCA has an enhanced performance in feature extraction. The application of the proposed method to real data is also addressed.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 214
Author(s):  
Aneta Sawikowska ◽  
Anna Piasecka ◽  
Piotr Kachlicki ◽  
Paweł Krajewski

Peak overlapping is a common problem in chromatography, mainly in the case of complex biological mixtures, i.e., metabolites. Due to the existence of the phenomenon of co-elution of different compounds with similar chromatographic properties, peak separation becomes challenging. In this paper, two computational methods of separating peaks, applied, for the first time, to large chromatographic datasets, are described, compared, and experimentally validated. The methods lead from raw observations to data that can form inputs for statistical analysis. First, in both methods, data are normalized by the mass of sample, the baseline is removed, retention time alignment is conducted, and detection of peaks is performed. Then, in the first method, clustering is used to separate overlapping peaks, whereas in the second method, functional principal component analysis (FPCA) is applied for the same purpose. Simulated data and experimental results are used as examples to present both methods and to compare them. Real data were obtained in a study of metabolomic changes in barley (Hordeum vulgare) leaves under drought stress. The results suggest that both methods are suitable for separation of overlapping peaks, but the additional advantage of the FPCA is the possibility to assess the variability of individual compounds present within the same peaks of different chromatograms.


2021 ◽  
Vol 11 (14) ◽  
pp. 6370
Author(s):  
Elena Quatrini ◽  
Francesco Costantino ◽  
David Mba ◽  
Xiaochuan Li ◽  
Tat-Hean Gan

The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.


2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.


Sign in / Sign up

Export Citation Format

Share Document