Physical properties of FeAs-based intermetallic compounds

Author(s):  
Priscila Ferrari Silveira Rosa
Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


2019 ◽  
Vol 21 ◽  
pp. e00422
Author(s):  
Noureddine Mounis ◽  
Mohamed Maachou ◽  
Houari Khachai ◽  
Abderrahmane Reggad ◽  
Bakhtiar ul Haq

2004 ◽  
Vol 18 (30) ◽  
pp. 3905-3914
Author(s):  
E. VERDÍN ◽  
R. ESCUDERO

Some intermetallic compounds which contain uranium or cerium present heavy fermion characteristics. Take, for example, in the UM 2 Al 3 ( M = Pd , Ni ) family, superconductivity and magnetism coexist and present heavy fermion behavior. This work presents the crystallographic characteristics and physical properties of a new compound of this family; the intermetallic compound UCo 2 Al 3. Our initial crystallographic studies performed in a small single crystal show that the structure is hexagonal and similar to the UNi 2 Al 3 and UPd 2 Al 3 parent compounds. The space group is P6/mmm with a=5.125 Å and c=4.167 Å crystalline parameters. Measurements of resistivity and magnetization performed on the single crystal reveal that the compound is not superconducting when measured at about 1.8 K. The compound is highly anisotropic and features related to Kondo-like behavior are observed. A weak ferromagnetic transition is observed at a temperature of about 20 K.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1067
Author(s):  
Jacek Ćwik

This Special Issue collects ten articles related to the broadly understood physical properties of intermetallic compounds [...]


1994 ◽  
Vol 210 (1-2) ◽  
pp. 83-89 ◽  
Author(s):  
F. Wastin ◽  
J. Rebizant ◽  
J.P. Sanchez ◽  
A. Blaise ◽  
J. Goffart ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3953
Author(s):  
Darja Gačnik ◽  
Andreja Jelen ◽  
Mitja Krnel ◽  
Stanislav Vrtnik ◽  
Jože Luzar ◽  
...  

In an attempt to incorporate tin (Sn) into high-entropy alloys composed of refractory metals Hf, Nb, Ti and Zr with the addition of 3d transition metals Cu, Fe, and Ni, we synthesized a series of alloys in the system HfTiZrSnM (M = Cu, Fe, Nb, Ni). The alloys were characterized crystallographically, microstructurally, and compositionally, and their physical properties were determined, with the emphasis on superconductivity. All Sn-containing alloys are multi-phase mixtures of intermetallic compounds (in most cases four). A common feature of the alloys is a microstructure of large crystalline grains of a hexagonal (Hf, Ti, Zr)5Sn3 partially ordered phase embedded in a matrix that also contains many small inclusions. In the HfTiZrSnCu alloy, some Cu is also incorporated into the grains. Based on the electrical resistivity, specific heat, and magnetization measurements, a superconducting (SC) state was observed in the HfTiZr, HfTiZrSn, HfTiZrSnNi, and HfTiZrSnNb alloys. The HfTiZrSnFe alloy shows a partial SC transition, whereas the HfTiZrSnCu alloy is non-superconducting. All SC alloys are type II superconductors and belong to the Anderson class of “dirty” superconductors.


Sign in / Sign up

Export Citation Format

Share Document