Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies

2015 ◽  
Vol 103 ◽  
pp. 170-178 ◽  
Author(s):  
Jinglian Du ◽  
Bin Wen ◽  
Roderick Melnik ◽  
Yoshiyuki Kawazoe
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahib Hasan ◽  
Khagendra Baral ◽  
Neng Li ◽  
Wai-Yim Ching

AbstractChalcogenide semiconductors and glasses have many applications in the civil and military fields, especially in relation to their electronic, optical and mechanical properties for energy conversion and in enviormental materials. However, they are much less systemically studied and their fundamental physical properties for a large class chalcogenide semiconductors are rather scattered and incomplete. Here, we present a detailed study using well defined first-principles calculations on the electronic structure, interatomic bonding, optical, and mechanical properties for 99 bulk chalcogenides including thirteen of these crytals which have never been calculated. Due to their unique composition and structures, these 99 bulk chalcogenides are divided into two main groups. The first group contains 54 quaternary crystals with the structure composition (A2BCQ4) (A = Ag, Cu; B = Zn, Cd, Hg, Mg, Sr, Ba; C = Si, Ge, Sn; Q = S, Se, Te), while the second group contains scattered ternary and quaternary chalcogenide crystals with a more diverse composition (AxByCzQn) (A = Ag, Cu, Ba, Cs, Li, Tl, K, Lu, Sr; B = Zn, Cd, Hg, Al, Ga, In, P, As, La, Lu, Pb, Cu, Ag; C = Si, Ge, Sn, As, Sb, Bi, Zr, Hf, Ga, In; Q = S, Se, Te; $$\hbox {x} = 1$$ x = 1 , 2, 3; $$\hbox {y} = 0$$ y = 0 , 1, 2, 5; $$\hbox {z} = 0$$ z = 0 , 1, 2 and $$\hbox {n} = 3$$ n = 3 , 4, 5, 6, 9). Moreover, the total bond order density (TBOD) is used as a single quantum mechanical metric to characterize the internal cohesion of these crystals enabling us to correlate them with the calculated properties, especially their mechanical properties. This work provides a very large database for bulk chalcogenides crucial for the future theoretical and experimental studies, opening opportunities for study the properties and potential application of a wide variety of chalcogenides.


2005 ◽  
Vol 475-479 ◽  
pp. 3111-3114
Author(s):  
Masataka Mizuno ◽  
Hideki Araki ◽  
Yasuharu Shirai

Some of intermetallic compounds exist in a wide range of concentration around the stoichiometric composition. First-principles electronic structure calculations have been performed for constitutional defects in non-stoichiometric CoAl and CoTi in order to investigate their stabilities and structural relaxations induced by constitutional defects. For the evaluation of stabilities of constitutional defects, the compositional dependence curves both of formation energies and of lattice parameters are obtained by the calculations employing supercells in various sizes. The lattice relaxations around constitutional defects are discussed by analyzing the change in electronic structures induced by constitutional defects.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.


Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2010
Author(s):  
Shuo Wang ◽  
Yuhong Zhao ◽  
Huijun Guo ◽  
Feifei Lan ◽  
Hua Hou

In this paper, the mechanical properties and minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 are calculated from first principles. The results show that the considered Zn-Zr intermetallic compounds are effective strengthening phases compared to MgZn2 based on the calculated elastic constants and polycrystalline bulk modulus B, shear modulus G, and Young’s modulus E. Meanwhile, the strong Zn-Zr ionic bondings in ZnZr, Zn2Zr, and Zn2Zr3 alloys lead to the characteristics of a higher modulus but lower ductility than the MgZn2 alloy. The minimum thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 is 0.48, 0.67, 0.68, and 0.49 W m−1 K−1, respectively, indicating that the thermal conductivity of the Mg-Zn-Zr alloy could be improved as the precipitation of Zn atoms from the α-Mg matrix to form the considered Zn-Zr binary alloys. Based on the analysis of the directional dependence of the minimum thermal conductivity, the minimum thermal conductivity in the direction of [110] can be identified as a crucial short limit for the considered Zn-Zr intermetallic compounds in Mg-Zn-Zr alloys.


Sign in / Sign up

Export Citation Format

Share Document