type ii superconductors
Recently Published Documents


TOTAL DOCUMENTS

1423
(FIVE YEARS 36)

H-INDEX

89
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Wayne Philip Crump

<p>Superconductors are used in many applications where large electrical currents are needed. This is due to their ability to transport an electric current without resistance. There is however a limit to the magnitude of current that can be conducted before dissipation starts to occur. This is known as the critical current and is a topic of great interest in applied superconductivity.  For type II superconductors, it is well known that vortex motion plays a role in the determination of the in-field critical current. This has led great effort in engineering the microstructure of these superconductors to hinder the motion of vortices and enhance their critical currents. However the self-field critical current (when there is no applied external field) generally does not see any enhancement due to efforts to pin vortex motion.  The work here examines the behaviour of the self-field critical current in thin-film and cylindrical wire superconductors of many different superconductor types and sizes. It is found that a critical state is reached when the current density at the surface of the sample reaches the magnitude of Bc/μ₀λ for type I and Bc₁/μ₀λ for type II superconductors regardless of the size and material type. This finding shows that there is a fundamental limit to the self-field current density that cannot be enhanced by engineering the microstructure and is essentially of thermodynamic origin.  The result also sets up the self-field critical current density as a probe of the superfluid density. This was explored in many different superconductor types by considering the temperature dependence of the self-field critical current. The ground-state magnetic penetration depth, groundstate energy gap and specific heat jump at the critical temperature were key thermodynamic parameters extracted from the critical current data. For a very large number of superconductors the extracted parameters in general matched well with literature values measured using conventional but much more complex techniques.  A result inferred from the critical state was that the current distribution across the width of a rectangular superconductor would be uniform, contrary to expectations of the Meissner state. This was tested by measuring the perpendicular magnetic field resulting from a transport current in a superconducting tape as it reached the critical state. It was indeed found that the current distribution is uniform across the width.  The self-field critical current was also measured in YBa₂Cu₃Oy samples with Zn impurities to measure the superfluid density and further test the self-field critical current as a measure of superfluid density and in particular explore whether it follows the canonical dependence on the transition temperature observed for superconductors with d-wave symmetry. Here the critical current was found to reduce as more impurities were added and indeed this matched its expected canonical reduction, following the superfluid density as Jc(sf) ∝p³/².  These results taken together support the unexpected existence of a fundamental limit in the self-field critical current, which is thermodynamic in origin.</p>


2021 ◽  
Author(s):  
◽  
Wayne Philip Crump

<p>Superconductors are used in many applications where large electrical currents are needed. This is due to their ability to transport an electric current without resistance. There is however a limit to the magnitude of current that can be conducted before dissipation starts to occur. This is known as the critical current and is a topic of great interest in applied superconductivity.  For type II superconductors, it is well known that vortex motion plays a role in the determination of the in-field critical current. This has led great effort in engineering the microstructure of these superconductors to hinder the motion of vortices and enhance their critical currents. However the self-field critical current (when there is no applied external field) generally does not see any enhancement due to efforts to pin vortex motion.  The work here examines the behaviour of the self-field critical current in thin-film and cylindrical wire superconductors of many different superconductor types and sizes. It is found that a critical state is reached when the current density at the surface of the sample reaches the magnitude of Bc/μ₀λ for type I and Bc₁/μ₀λ for type II superconductors regardless of the size and material type. This finding shows that there is a fundamental limit to the self-field current density that cannot be enhanced by engineering the microstructure and is essentially of thermodynamic origin.  The result also sets up the self-field critical current density as a probe of the superfluid density. This was explored in many different superconductor types by considering the temperature dependence of the self-field critical current. The ground-state magnetic penetration depth, groundstate energy gap and specific heat jump at the critical temperature were key thermodynamic parameters extracted from the critical current data. For a very large number of superconductors the extracted parameters in general matched well with literature values measured using conventional but much more complex techniques.  A result inferred from the critical state was that the current distribution across the width of a rectangular superconductor would be uniform, contrary to expectations of the Meissner state. This was tested by measuring the perpendicular magnetic field resulting from a transport current in a superconducting tape as it reached the critical state. It was indeed found that the current distribution is uniform across the width.  The self-field critical current was also measured in YBa₂Cu₃Oy samples with Zn impurities to measure the superfluid density and further test the self-field critical current as a measure of superfluid density and in particular explore whether it follows the canonical dependence on the transition temperature observed for superconductors with d-wave symmetry. Here the critical current was found to reduce as more impurities were added and indeed this matched its expected canonical reduction, following the superfluid density as Jc(sf) ∝p³/².  These results taken together support the unexpected existence of a fundamental limit in the self-field critical current, which is thermodynamic in origin.</p>


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6204
Author(s):  
Muhammad U. Fareed ◽  
Harold S. Ruiz

Improving our understanding of the physical coupling between type-II superconductors (SC) and soft ferromagnetic materials (SFM) is the root for progressing to the application of SC-SFM metastructures in scenarios such as magnetic cloaking, magnetic shielding, and power transmission systems. However, in the latter, some intriguing and yet unexplained phenomena occurred, such as a noticeable rise in the SC energy losses, and a local but not isotropic deformation of its magnetic flux density. These phenomena, which are in apparent contradiction with the most fundamental theory of electromagnetism for superconductivity, that is, the critical state theory (CST), have remained unexplained for about 20 years, given the acceptance of the controversial and yet paradigmatic existence of the so-called overcritical current densities. Therefore, aiming to resolve these long-standing problems, we extended the CST by incorporating a semi-analytical model for cylindrical monocore SC-SFM heterostructures, setting the standards for its validation with a variational approach of multipole functionals for the magnetic coupling between Sc and SFM materials. It is accompanied by a comprehensive numerical study for SFM sheaths of arbitrary dimensions and magnetic relative permeabilities μr, ranging from μr=5 (NiZn ferrites) to μr = 350,000 (pure Iron), showing how the AC-losses of the SC-SFM metastructure radically changes as a function of the SC and the SFM radius for μr≥100. Our numerical technique and simulations also revealed a good qualitative agreement with the magneto optical imaging observations that were questioning the CST validness, proving therefore that the reported phenomena for self-field SC-SFM heterostructures can be understood without including the ansatz of overcritical currents.


2021 ◽  
Author(s):  
Vasily Minkov ◽  
Sergey Bud'ko ◽  
Fedor Balakirev ◽  
Vitali Prakapenka ◽  
Stella Chariton ◽  
...  

Abstract In the last few years, the superconducting transition temperature, Tc, of hydrogen-rich compounds has increased dramatically, and is now approaching room temperature. However, the pressures at which these materials are stable exceed one million atmospheres and limit the number of available experimental probes - superconductivity has been primarily identified based on electrical transport measurements. Here, we report definitive evidence of the Meissner effect – a key feature of superconductivity – in H3S and LaH10. Furthermore, we have determined characteristic superconducting parameters: a lower critical field Hc1 of ∼1.9 and ∼1.0 T, and a London penetration depth λL of ∼13 and ∼21 nm in Im-3m-H3S and Fm-3m-LaH10, respectively. These compounds have low values of the Ginzburg-Landau parameter κ ∼7–14 and belong to the group of “moderate” type II superconductors.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3953
Author(s):  
Darja Gačnik ◽  
Andreja Jelen ◽  
Mitja Krnel ◽  
Stanislav Vrtnik ◽  
Jože Luzar ◽  
...  

In an attempt to incorporate tin (Sn) into high-entropy alloys composed of refractory metals Hf, Nb, Ti and Zr with the addition of 3d transition metals Cu, Fe, and Ni, we synthesized a series of alloys in the system HfTiZrSnM (M = Cu, Fe, Nb, Ni). The alloys were characterized crystallographically, microstructurally, and compositionally, and their physical properties were determined, with the emphasis on superconductivity. All Sn-containing alloys are multi-phase mixtures of intermetallic compounds (in most cases four). A common feature of the alloys is a microstructure of large crystalline grains of a hexagonal (Hf, Ti, Zr)5Sn3 partially ordered phase embedded in a matrix that also contains many small inclusions. In the HfTiZrSnCu alloy, some Cu is also incorporated into the grains. Based on the electrical resistivity, specific heat, and magnetization measurements, a superconducting (SC) state was observed in the HfTiZr, HfTiZrSn, HfTiZrSnNi, and HfTiZrSnNb alloys. The HfTiZrSnFe alloy shows a partial SC transition, whereas the HfTiZrSnCu alloy is non-superconducting. All SC alloys are type II superconductors and belong to the Anderson class of “dirty” superconductors.


2021 ◽  
Vol 122 (5) ◽  
pp. 434-464
Author(s):  
V. A. Kashurnikov ◽  
A. N. Maksimova ◽  
I. A. Rudnev ◽  
A. N. Moroz

2021 ◽  
Vol 103 (13) ◽  
Author(s):  
Takuya Taira ◽  
Yusuke Kato ◽  
Masanori Ichioka ◽  
Hiroto Adachi

Sign in / Sign up

Export Citation Format

Share Document