Conservation, Ecology, and Management of Catfish: The Second International Symposium

<em>Abstract</em>.—Natural chemical markers in otoliths and fin rays have proven useful for retrospectively describing environmental history of fishes in a variety of environments. However, no studies have applied this technique to catfishes or evaluated catfish pectoral spine chemistry as a nonlethal alternative to otolith chemistry. We characterized relationships between water, otolith, and pectoral spine (articulating process) chemistry for channel catfish <em>Ictalurus punctatus</em>, flathead catfish <em>Pylodictis olivaris</em>, and blue catfish <em>I. furcatus</em> and determined the accuracy with which fish could be classified to their environment of capture using otolith and pectoral spine chemical signatures. Fish and water samples were collected from nine sites during 2009. Otolith, spine, and water samples were analyzed for Sr:Ca and Ba:Ca; otolith δ<sup>18</sup>O and δ<sup>13</sup>C and water δ<sup>18</sup>O were also measured. Water, otolith, and spine Sr:Ca were highly correlated, as were water and otolith δ<sup>18</sup>O. Relationships between water, otolith, and spine chemistry did not differ among species. Otolith Sr:Ca, δ<sup>18</sup>O, and δ<sup>13</sup>C and spine Sr:Ca differed among sites, reflecting geographic differences in water chemistry. Neither otolith nor spine Ba:Ca differed among sites despite intersite differences in water Ba:Ca. Both otolith Sr:Ca, δ<sup>18</sup>O, and δ<sup>13</sup>C and fin spine Sr:Ca classified fish to their environment of capture with a high degree of accuracy, except in the middle and lower Mississippi River where many recent immigrants appeared to be present. Natural chemical signatures in otoliths or pectoral spines will likely be effective for reconstructing environmental history of catfishes when spatial differences in water chemistry are present, enabling investigations of stock mixing and recruitment sources for these species.

Author(s):  
J. R. McNeill

This chapter discusses the emergence of environmental history, which developed in the context of the environmental concerns that began in the 1960s with worries about local industrial pollution, but which has since evolved into a full-scale global crisis of climate change. Environmental history is ‘the history of the relationship between human societies and the rest of nature’. It includes three chief areas of inquiry: the study of material environmental history, political and policy-related environmental history, and a form of environmental history which concerns what humans have thought, believed, written, and more rarely, painted, sculpted, sung, or danced that deals with the relationship between society and nature. Since 1980, environmental history has come to flourish in many corners of the world, and scholars everywhere have found models, approaches, and perspectives rather different from those developed for the US context.


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


Sign in / Sign up

Export Citation Format

Share Document