Research on Problems and Measures of High Voltage Electrical Test in Power System

2021 ◽  
Author(s):  
Zhifeng Shi ◽  
Nan Huang ◽  
Hongtao Ai ◽  
Xiangyu Shi ◽  
Tianan Zhu ◽  
...  

2018 ◽  
Vol 7 (3.36) ◽  
pp. 127 ◽  
Author(s):  
Nishanthi Sunthrasakaran ◽  
Nor Akmal Mohd Jamail ◽  
Qamarul Ezani Kamarudin ◽  
Sujeetha Gunabalan

The most important aspect influencing the circumstance and characteristics of electrical discharges is the distribution of electric field in the gap of electrodes. The study of discharge performance requires details on the variation of maximum electric field around the electrode. In electrical power system, the insulation of high voltage power system usually subjected with high electric field. The high electric field causes the degradation performance of insulation and electrical breakdown start to occur. Generally, the standard sphere gaps widely used for protective device in electrical power equipment. This project is study about the electric field distribution and current density for different electrode configuration with XLPE barrier. Hence, the different electrode configuration influences the electric field distribution. This project mainly involves the simulation in order to evaluate the maximum electric field for different electrode configuration. Finite Element Method (FEM) software has been used in this project to perform the simulation. This project also discusses the breakdown characteristics of the XLPE. The accurate evaluation of electric field distribution and maximum electric field is an essential for the determination of discharge behavior of high voltage apparatus and components. The degree of uniformity is very low for pointed rod-plane when compared to other two electrode configurations. The non- uniform electric distribution creates electrical stress within the surface of dielectric barrier. As a conclusion, when the gap distance between the electrodes increase the electric field decrease.  


2018 ◽  
Vol 7 (3.27) ◽  
pp. 500
Author(s):  
R Vasudevan ◽  
S Ramalakshmi

A new management approach for the reactive-power injections of Voltage supply Converters in High Voltage DC (VSC-HVDC) multi-terminal Systems to enhance grid transient stability. A reactive-power supplementary signal is provided for each convertor. Its worth is proportional to the frequency deviation of its consequent AC bus with admiration to the weighed-average frequency of the multiterminal system stations. The hope is to extend (decrease) the magnetism torsion of generators close to those terminals during which the frequency is superior to (below) the weighed-average frequency used. The AC frequency for all VSC stations is ever more accessible regionally for synchronization functions and will be utilized by a central controller. Simulations are allotted victimization PSS/E and therefore the outcome have revealed that transient stability is enlarged victimization this approach. Since this approach uses world capability of all VSC stations, the collision of the communication delays has been analyzed, concluding that the depressing consequence is modest, for realistic latency values. 


Sign in / Sign up

Export Citation Format

Share Document