scholarly journals Time Fractional Generalized Korteweg-de Vries Equation: Explicit Series Solutions and Exact Solutions

2021 ◽  
Vol 2 (2) ◽  
pp. 62-77
Author(s):  
Rajeev Kumar ◽  
Sanjeev Kumar ◽  
Sukhneet Kaur ◽  
Shrishty Jain

In this article, an attempt is made to achieve the series solution of the time fractional generalized Korteweg-de Vries equation which leads to a conditionally convergent series solution. We have also resorted to another technique involving conversion of the given fractional partial differential equations to ordinary differential equations by using fractional complex transform. This technique is discussed separately for modified Riemann-Liouville and conformable derivatives. Convergence analysis and graphical view of the obtained solution are demonstrated in this work.

1973 ◽  
Vol 59 (4) ◽  
pp. 721-736 ◽  
Author(s):  
Harvey Segur

The method of solution of the Korteweg–de Vries equation outlined by Gardneret al.(1967) is exploited to solve the equation. A convergent series representation of the solution is obtained, and previously known aspects of the solution are related to this general form. Asymptotic properties of the solution, valid for large time, are examined. Several simple methods of obtaining approximate asymptotic results are considered.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 863-866
Author(s):  
Wei Zhang ◽  
Kai-Li Xu ◽  
Yun Lei

In this paper, the local fractional series expansion method is used to find the series solution for the local fractional Korteweg-de Vries equation.


2021 ◽  
Vol 8 (3) ◽  
pp. 410-421
Author(s):  
S. I. Lyashko ◽  
◽  
V. H. Samoilenko ◽  
Yu. I. Samoilenko ◽  
I. V. Gapyak ◽  
...  

The paper deals with the Korteweg-de Vries equation with variable coefficients and a small parameter at the highest derivative. The asymptotic step-like solution to the equation is obtained by the non-linear WKB technique. An algorithm of constructing the higher terms of the asymptotic step-like solutions is presented. The theorem on the accuracy of the higher asymptotic approximations is proven. The proposed technique is demonstrated by example of the equation with given variable coefficients. The main term and the first asymptotic approximation of the given example are found, their analysis is done and statement of the approximate solutions accuracy is presented.


2020 ◽  
pp. 92-107
Author(s):  
Rasha H. Ibraheem

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.


2008 ◽  
Vol 63 (10-11) ◽  
pp. 621-626 ◽  
Author(s):  
Ahmet Yildirim

The homotopy perturbation method (HPM) is employed successfully for solving the modified Korteweg-de Vries equation. In this method, the solution is calculated in the form of a convergent series with an easily computable component. This approach does not need linearization, weak nonlinearity assumptions or perturbation theory. The results show applicability, accuracy and efficiency of the HPM in solving nonlinear differential equations. It is predicted that the HPM can be widely applied in science and engineering problems.


Sign in / Sign up

Export Citation Format

Share Document