scholarly journals On strongly reflexive topological groups

2001 ◽  
Vol 2 (2) ◽  
pp. 219 ◽  
Author(s):  
M. J. Chasco ◽  
E. Martin-Peinador

<p>An Abelian topological group G is strongly reflexive if every closed subgroup and every Hausdorff quotient of G and of its dual group G<sup>⋀</sup>, is reflexive.</p> <p>In this paper we prove the following: the annihilator of a closed subgroup of an almost metrizable group is topologically isomorphic to the dual of the corresponding Hausdorff quotient, and an analogous statement holds for the character group of the starting group. As a consequence of this perfect duality, an almost metrizable group is strongly reflexive just if its Hausdorff quotients, as well as the Hausdorff quotients of its dual, are reflexive. The simplification obtained may be significant from an operative point of view.</p>

1990 ◽  
Vol 41 (3) ◽  
pp. 451-456 ◽  
Author(s):  
Eli Katz ◽  
Sidney A. Morris

Let n be a positive integer, Bn the closed unit ball in Euclidean n-space, and X any countable CW-complex of dimension at most n. It is shown that the free Abelian topological group on Bn, F(Bn), has F(X) as a closed subgroup. It is also shown that for every differentiable manifold Y of dimension at most n, F(Y) is a closed subgroup of F(Bn).


2015 ◽  
Vol 36 (7) ◽  
pp. 2107-2120
Author(s):  
ZOLTÁN BUCZOLICH ◽  
GABRIELLA KESZTHELYI

Suppose that $G$ is a compact Abelian topological group, $m$ is the Haar measure on $G$ and $f:G\rightarrow \mathbb{R}$ is a measurable function. Given $(n_{k})$, a strictly monotone increasing sequence of integers, we consider the non-conventional ergodic/Birkhoff averages $$\begin{eqnarray}M_{N}^{\unicode[STIX]{x1D6FC}}f(x)=\frac{1}{N+1}\mathop{\sum }_{k=0}^{N}f(x+n_{k}\unicode[STIX]{x1D6FC}).\end{eqnarray}$$ The $f$-rotation set is $$\begin{eqnarray}\unicode[STIX]{x1D6E4}_{f}=\{\unicode[STIX]{x1D6FC}\in G:M_{N}^{\unicode[STIX]{x1D6FC}}f(x)\text{ converges for }m\text{ almost every }x\text{ as }N\rightarrow \infty \}.\end{eqnarray}$$We prove that if $G$ is a compact locally connected Abelian group and $f:G\rightarrow \mathbb{R}$ is a measurable function then from $m(\unicode[STIX]{x1D6E4}_{f})>0$ it follows that $f\in L^{1}(G)$. A similar result is established for ordinary Birkhoff averages if $G=Z_{p}$, the group of $p$-adic integers. However, if the dual group, $\widehat{G}$, contains ‘infinitely many multiple torsion’ then such results do not hold if one considers non-conventional Birkhoff averages along ergodic sequences. What really matters in our results is the boundedness of the tail, $f(x+n_{k}\unicode[STIX]{x1D6FC})/k$, $k=1,\ldots ,$ for almost every $x$ for many $\unicode[STIX]{x1D6FC}$; hence, some of our theorems are stated by using instead of $\unicode[STIX]{x1D6E4}_{f}$ slightly larger sets, denoted by $\unicode[STIX]{x1D6E4}_{f,b}$.


2008 ◽  
Vol 78 (3) ◽  
pp. 487-495 ◽  
Author(s):  
CAROLYN E. MCPHAIL ◽  
SIDNEY A. MORRIS

AbstractThe variety of topological groups generated by the class of all abelian kω-groups has been shown to equal the variety of topological groups generated by the free abelian topological group on [0, 1]. In this paper it is proved that the free abelian topological group on a compact Hausdorff space X generates the same variety if and only if X is not scattered.


1993 ◽  
Vol 114 (3) ◽  
pp. 439-442 ◽  
Author(s):  
Sidney A. Morris ◽  
Vladimir G. Pestov

We prove that any open subgroup of the free abelian topological group on a completely regular space is a free abelian topological group. Moreover, the free topological bases of both groups have the same covering dimension. The prehistory of this result is as follows. The celebrated Nielsen–Schreier theorem states that every subgroup of a free group is free, and it is equally well known that every subgroup of a free abelian group is free abelian. The analogous result is not true for free (abelian) topological groups [1,5]. However, there exist certain sufficient conditions for a subgroup of a free topological group to be topologically free [2]; in particular, an open subgroup of a free topological group on a kω-space is topologically free. The corresponding question for free abelian topological groups asked 8 years ago by Morris [11] proved to be more difficult and remained open even within the realm of kω-spaces. In the present paper a comprehensive answer to this question is obtained.


Author(s):  
Peter Nickolas

AbstractIt is shown that if {Gn: n = 1, 2,…} is a countable family of Hausdorff kω-topological groups with a common closed subgroup A, then the topological amalgamated free product *AGn exists and is a Hausdorff kω-topological group with each Gn as a closed subgroup. A consequence is the theorem of La Martin that epimorphisms in the category of kω-topological groups have dense image.


1975 ◽  
Vol 13 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Peter Nickolas

M.I.Graev has shown that subgroups of free topological groups need not be free. Brown and Hardy, however, have proved that any open subgroup of the free topological group on a kw-space is again a free topological group: indeed, this is true for any closed subgroup for which a Schreier transversal can be chosen continuously. This note provides a proof of this result more direct than that of Brown and Hardy. An example is also given to show that the condition stated in the theorem is not a necessary condition for freeness of a subgroup. Finally, a sharpened version of a particular case of the theorem is obtained, and is applied to the preceding example.


1971 ◽  
Vol 4 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Sidney A. Morris

In this note the notion of a free topological product Gα of a set {Gα} of topological groups is introduced. It is shown that it always exists, is unique and is algebraically isomorphic to the usual free product of the underlying groups. Further if each Gα is Hausdorff, then Gα is Hausdorff and each Gα is a closed subgroup. Also Gα is a free topological group (respectively, maximally almost periodic) if each Gα is. This notion is then combined with the theory of varieties of topological groups developed by the author. For a variety of topological groups, the -product of groups in is defined. It is shown that the -product, Gα of any set {Gα} of groups in exists, is unique and is algebraically isomorphic to the usual varietal product. It is noted that the -product of Hausdorff groups is not necessarily Hausdorff, but is if is abelian. Each Gα is a quotient group of Gα. It is proved that the -product of free topological groups of and projective topological groups of are of the same type. Finally it is shown that Gα is connected if and only if each Gα is connected.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
L. Morales ◽  
M. Tkachenko

AbstractA topological group is strongly realcompact if it is topologically isomorphic to a closed subgroup of a product of separable metrizable groups. We show that if H is an invariant Čech-complete subgroup of an ω-narrow topological group G, then G is strongly realcompact if and only if G/H is strongly realcompact. Our proof of this result is based on a thorough study of the interaction between the P-modification of topological groups and the operation of taking quotient groups.


1986 ◽  
Vol 100 (2) ◽  
pp. 347-353 ◽  
Author(s):  
E. Katz ◽  
S. A. Morris ◽  
P. Nickolas

In this paper we prove a theorem which gives general conditions under which the free abelian topological group F(Y) on a space Y can be embedded in the free abeian topological group F(X) on a space X.


1995 ◽  
Vol 52 (2) ◽  
pp. 297-311 ◽  
Author(s):  
Vladimir Pestov

We study the class of Tychonoff topological spaces such that the free Abelian topological group A(X) is reflexive (satisfies the Pontryagin-van Kampen duality). Every such X must be totally path-disconnected and (if it is pseudocompact) must have a trivial first cohomotopy group π1(X). If X is a strongly zero-dimensional space which is either metrisable or compact, then A(X) is reflexive.


Sign in / Sign up

Export Citation Format

Share Document