scholarly journals A better framework for first countable spaces

2003 ◽  
Vol 4 (2) ◽  
pp. 289
Author(s):  
Gerhard Preuss

<p>In the realm of semiuniform convergence spaces first countability is divisible and leads to a well-behaved topological construct with natural function spaces and one-point extensions such that countable products of quotients are quotients. Every semiuniform convergence space (e.g. symmetric topological space, uniform space, filter space, etc.) has an underlying first countable space. Several applications of first countability in a broader context than the usual one of topological spaces are studied.</p>

1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 685
Author(s):  
Qiu Jin ◽  
Lingqiang Li ◽  
Jing Jiang

Fischer diagonal condition plays an important role in convergence space since it precisely ensures a convergence space to be a topological space. Generally, Fischer diagonal condition can be represented equivalently both by Kowalsky compression operator and Gähler compression operator. ⊤-convergence spaces are fundamental fuzzy extensions of convergence spaces. Quite recently, by extending Gähler compression operator to fuzzy case, Fang and Yue proposed a fuzzy counterpart of Fischer diagonal condition, and proved that ⊤-convergence space with their Fischer diagonal condition just characterizes strong L-topology—a type of fuzzy topology. In this paper, by extending the Kowalsky compression operator, we present a fuzzy counterpart of Fischer diagonal condition, and verify that a ⊤-convergence space with our Fischer diagonal condition precisely characterizes topological generated L-topology—a type of fuzzy topology. Hence, although the crisp Fischer diagonal conditions based on the Kowalsky compression operator and the on Gähler compression operator are equivalent, their fuzzy counterparts are not equivalent since they describe different types of fuzzy topologies. This indicates that the fuzzy topology (convergence) is more complex and varied than the crisp topology (convergence).


1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].


1979 ◽  
Vol 20 (3) ◽  
pp. 447-466
Author(s):  
Robert A. Herrmann

The concept of the perfect map on a convergence space (X, q), where q is a convergence function, is introduced and investigated. Such maps are not assumed to be either continuous or surjective. Some nontrivial examples of well known mappings between topological spaces, nontopological pretopological spaces and nonpseudotopological convergence spaces are shown to be perfect in this new sense. Among the numerous results obtained is a covering property for perfectness and the result that such maps are closed, compact, and for surjections almost-compact. Sufficient conditions are given for a compact (respectively almost-compact) map to be perfect. In the final section, a major result shows that if f: (X, q) → (Y, p) is perfect and g: (X, q) → (Z, s) is weakly-continuous into Hausdorff Z, then (f, g): (X, q) → (Y×Z, p×s) is perfect. This result is given numerous applications.


1994 ◽  
Vol 17 (2) ◽  
pp. 277-282
Author(s):  
Shing S. So

A convergence space is a set together with a notion of convergence of nets. It is well known how the one-point compactification can be constructed on noncompact, locally compact topological spaces. In this paper, we discuss the construction of the one-point compactification on noncompact convergence spaces and some of the properties of the one-point compactification of convergence spaces are also discussed.


2018 ◽  
Vol 19 (1) ◽  
pp. 55
Author(s):  
Wafa Khalaf Alqurashi ◽  
Liaqat Ali Khan ◽  
Alexander V. Osipov

<p>Let X and Y be topological spaces, F(X,Y) the set of all functions from X into Y and C(X,Y) the set of all continuous functions in F(X,Y). We study various set-open topologies tλ (λ ⊆ P(X)) on F(X,Y) and consider their existence, comparison and coincidence in the setting of Y a general topological space as well as for Y = R. Further, we consider the parallel notion of quasi-uniform convergence topologies Uλ (λ ⊆ P(X)) on F(X,Y) to discuss Uλ-closedness and right Uλ-K-completeness properties of a certain subspace of F(X,Y) in the case of Y a locally symmetric quasi-uniform space. We include some counter-examples to justify our comments.</p>


1999 ◽  
Vol 22 (3) ◽  
pp. 659-665 ◽  
Author(s):  
Woo Chorl Hong

First, we introduce sequential convergence structures and characterize Fréchet spaces and continuous functions in Fréchet spaces using these structures. Second, we give sufficient conditions for the expansion of a topological space by the sequential closure operator to be a Fréchet space and also a sufficient condition for a simple expansion of a topological space to be Fréchet. Finally, we study on a sufficient condition that a sequential space be Fréchet, a weakly first countable space be first countable, and a symmetrizable space be semi-metrizable.


2012 ◽  
Vol 62 (2) ◽  
Author(s):  
Ľubica Holá ◽  
Branislav Novotný

AbstractWe give interesting characterizations using subcontinuity. Let X, Y be topological spaces. We study subcontinuity of multifunctions from X to Y and its relations to local compactness, local total boundedness and upper semicontinuity. If Y is regular, then F is subcontinuous iff $$\bar F$$ is USCO. A uniform space Y is complete iff for every topological space X and for every net {F a}, F a ⊂ X × Y, of multifunctions subcontinuous at x ∈ X, uniformly convergent to F, F is subcontinuous at x. A Tychonoff space Y is Čech-complete (resp. G m-space) iff for every topological space X and every multifunction F ⊂ X × Y the set of points of subcontinuity of F is a G δ-subset (resp. G m-subset) of X.


2019 ◽  
Vol 7 (1) ◽  
pp. 250-252 ◽  
Author(s):  
Tobias Fritz

Abstract In this short note, we prove that the stochastic order of Radon probability measures on any ordered topological space is antisymmetric. This has been known before in various special cases. We give a simple and elementary proof of the general result.


Author(s):  
B. J. Day ◽  
G. M. Kelly

We are concerned with the category of topological spaces and continuous maps. A surjection f: X → Y in this category is called a quotient map if G is open in Y whenever f−1G is open in X. Our purpose is to answer the following three questions:Question 1. For which continuous surjections f: X → Y is every pullback of f a quotient map?Question 2. For which continuous surjections f: X → Y is f × lz: X × Z → Y × Z a quotient map for every topological space Z? (These include all those f answering to Question 1, since f × lz is the pullback of f by the projection map Y ×Z → Y.)Question 3. For which topological spaces Z is f × 1Z: X × Z → Y × Z a qiptoent map for every quotient map f?


Sign in / Sign up

Export Citation Format

Share Document