scholarly journals One-point compactification on convergence spaces

1994 ◽  
Vol 17 (2) ◽  
pp. 277-282
Author(s):  
Shing S. So

A convergence space is a set together with a notion of convergence of nets. It is well known how the one-point compactification can be constructed on noncompact, locally compact topological spaces. In this paper, we discuss the construction of the one-point compactification on noncompact convergence spaces and some of the properties of the one-point compactification of convergence spaces are also discussed.


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.



Author(s):  
Adel N. Boules

The first eight sections of this chapter constitute its core and are generally parallel to the leading sections of chapter 4. Most of the sections are brief and emphasize the nonmetric aspects of topology. Among the topics treated are normality, regularity, and second countability. The proof of Tychonoff’s theorem for finite products appears in section 8. The section on locally compact spaces is the transition between the core of the chapter and the more advanced sections on metrization, compactification, and the product of infinitely many spaces. The highlights include the one-point compactification, the Urysohn metrization theorem, and Tychonoff’s theorem. Little subsequent material is based on the last three sections. At various points in the book, it is explained how results stated for the metric case can be extended to topological spaces, especially locally compact Hausdorff spaces. Some such results are developed in the exercises.



2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fatemah Ayatollah Zadeh Shirazi ◽  
Meysam Miralaei ◽  
Fariba Zeinal Zadeh Farhadi

In the following text, we want to study the behavior of one point compactification operator in the chain Ξ := {Metrizable, Normal, T2, KC, SC, US, T1, TD, TUD, T0, Top} of subcategories of category of topological spaces, Top (where we denote the subcategory of Top, containing all topological spaces with property P , simply by P). Actually we want to know, for P∈Ξ and X∈P, the one point compactification of topological space X belongs to which elements of Ξ. Finally we find out that the chain {Metrizable, T2, KC, SC, US, T1, TD, TUD, T0, Top} is a forwarding chain with respect to one point compactification operator.



1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)



2003 ◽  
Vol 4 (2) ◽  
pp. 289
Author(s):  
Gerhard Preuss

<p>In the realm of semiuniform convergence spaces first countability is divisible and leads to a well-behaved topological construct with natural function spaces and one-point extensions such that countable products of quotients are quotients. Every semiuniform convergence space (e.g. symmetric topological space, uniform space, filter space, etc.) has an underlying first countable space. Several applications of first countability in a broader context than the usual one of topological spaces are studied.</p>



Author(s):  
Zhen-Qing Chen ◽  
Masatoshi Fukushima

This chapter studies a symmetric Hunt process associated with a regular Dirichlet form. Without loss of generality, the majority of the chapter assumes that E is a locally compact separable metric space, m is a positive Radon measure on E with supp[m] = E, and X = (Xₜ, Pₓ) is an m-symmetric Hunt process on (E,B(E)) whose Dirichlet form (E,F) is regular on L²(E; m). It adopts without any specific notices those potential theoretic terminologies and notations that are formulated in the previous chapter for the regular Dirichlet form (E,F). Furthermore, throughout this chapter, the convention that any numerical function on E is extended to the one-point compactification E ∂ = E ∪ {∂} by setting its value at δ‎ to be zero is adopted.



Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 789
Author(s):  
Susmit Bagchi

The continuous and injective embeddings of closed curves in Hausdorff topological spaces maintain isometry in subspaces generating components. An embedding of a circle group within a topological space creates isometric subspace with rotational symmetry. This paper introduces the generalized algebraic construction of functional groups and its topological embeddings into normal spaces maintaining homeomorphism of functional groups. The proposed algebraic construction of functional groups maintains homeomorphism to rotationally symmetric circle groups. The embeddings of functional groups are constructed in a sequence in the normal topological spaces. First, the topological decomposition and associated embeddings of a generalized group algebraic structure in the lower dimensional space is presented. It is shown that the one-point compactification property of topological space containing the decomposed group embeddings can be identified. Second, the sequential topological embeddings of functional groups are formulated. The proposed sequential embeddings follow Schoenflies property within the normal topological space. The preservation of homeomorphism between disjoint functional group embeddings under Banach-type contraction is analyzed taking into consideration that the underlying topological space is Hausdorff and the embeddings are in a monotone class. It is shown that components in a monotone class of isometry are not separable, whereas the multiple disjoint monotone class of embeddings are separable. A comparative analysis of the proposed concepts and formulations with respect to the existing structures is included in the paper.



1979 ◽  
Vol 20 (3) ◽  
pp. 447-466
Author(s):  
Robert A. Herrmann

The concept of the perfect map on a convergence space (X, q), where q is a convergence function, is introduced and investigated. Such maps are not assumed to be either continuous or surjective. Some nontrivial examples of well known mappings between topological spaces, nontopological pretopological spaces and nonpseudotopological convergence spaces are shown to be perfect in this new sense. Among the numerous results obtained is a covering property for perfectness and the result that such maps are closed, compact, and for surjections almost-compact. Sufficient conditions are given for a compact (respectively almost-compact) map to be perfect. In the final section, a major result shows that if f: (X, q) → (Y, p) is perfect and g: (X, q) → (Z, s) is weakly-continuous into Hausdorff Z, then (f, g): (X, q) → (Y×Z, p×s) is perfect. This result is given numerous applications.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Yang ◽  
Sheng-Gang Li ◽  
William Zhu ◽  
Xiao-Fei Yang ◽  
Ahmed Mostafa Khalil

An L , M -fuzzy topological convergence structure on a set X is a mapping which defines a degree in M for any L -filter (of crisp degree) on X to be convergent to a molecule in L X . By means of L , M -fuzzy topological neighborhood operators, we show that the category of L , M -fuzzy topological convergence spaces is isomorphic to the category of L , M -fuzzy topological spaces. Moreover, two characterizations of L -topological spaces are presented and the relationship with other convergence spaces is concretely constructed.



Sign in / Sign up

Export Citation Format

Share Document