Uniformities on a Product

1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].

2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


2018 ◽  
Vol 19 (1) ◽  
pp. 55
Author(s):  
Wafa Khalaf Alqurashi ◽  
Liaqat Ali Khan ◽  
Alexander V. Osipov

<p>Let X and Y be topological spaces, F(X,Y) the set of all functions from X into Y and C(X,Y) the set of all continuous functions in F(X,Y). We study various set-open topologies tλ (λ ⊆ P(X)) on F(X,Y) and consider their existence, comparison and coincidence in the setting of Y a general topological space as well as for Y = R. Further, we consider the parallel notion of quasi-uniform convergence topologies Uλ (λ ⊆ P(X)) on F(X,Y) to discuss Uλ-closedness and right Uλ-K-completeness properties of a certain subspace of F(X,Y) in the case of Y a locally symmetric quasi-uniform space. We include some counter-examples to justify our comments.</p>


Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1403-1429
Author(s):  
Zadeh Ayatollah ◽  
Fatemeh Ebrahimifar ◽  
Mohammad Mahmoodi

Suppose ? is a nonzero cardinal number, I is an ideal on arc connected Topological space X, and B?I(X) is the subgroup of ?1(X) (the first fundamental group of X) generated by homotopy classes of ?_I loops. The main aim of this text is to study B?I(X)s and compare them. Most interest is in ? ? {?,c} and I ? {Pfin(X), {?}}, where Pfin(X) denotes the collection of all finite subsets of X. We denote B?{?}(X) with B?(X). We prove the following statements: for arc connected topological spaces X and Y if B?(X) is isomorphic to B?(Y) for all infinite cardinal number ?, then ?1(X) is isomorphic to ?1(Y); there are arc connected topological spaces X and Y such that ?1(X) is isomorphic to ?1(Y) but B?(X) is not isomorphic to B?(Y); for arc connected topological space X we have B?(X) ? Bc(X) ? ?1(X); for Hawaiian earring X, the sets B?(X), Bc(X), and ?1(X) are pairwise distinct. So B?(X)s and B?I(X)s will help us to classify the class of all arc connected topological spaces with isomorphic fundamental groups.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dipankar Dey ◽  
Dhananjay Mandal ◽  
Manabendra Nath Mukherjee

PurposeThe present article deals with the initiation and study of a uniformity like notion, captioned μ-uniformity, in the context of a generalized topological space.Design/methodology/approachThe existence of uniformity for a completely regular topological space is well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a structure on generalized topological space has been developed, to establish the same type of compatibility in the corresponding frameworks.FindingsIt is proved, among other things, that a μ-uniformity on a non-empty set X always induces a generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a μ-proximity, both giving the same generalized topology on the underlying set.Originality/valueIt is an original work influenced by the previous works that have been done on generalized topological spaces. A kind of generalization has been done in this article, that has produced an intermediate structure to the already known generalized topological spaces.


Author(s):  
V. V. Mykhaylyuk

A connection between the separability and the countable chain condition of spaces withL-property (a topological spaceXhasL-property if for every topological spaceY, separately continuous functionf:X×Y→ℝand open setI⊆ℝ,the setf−1(I)is anFσ-set) is studied. We show that every completely regular Baire space with theL-property and the countable chain condition is separable and constructs a nonseparable completely regular space with theL-property and the countable chain condition. This gives a negative answer to a question of M. Burke.


2004 ◽  
Vol 2004 (69) ◽  
pp. 3799-3816
Author(s):  
S. K. Acharyya ◽  
K. C. Chattopadhyay ◽  
Partha Pratim Ghosh

The main aim of this paper is to provide a construction of the Banaschewski compactification of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered field-valued continuous functions on the space, and thereby exhibit the independence of the construction from any completeness axiom for an ordered field. In the process of describing this construction we have generalized the classical versions of M. H. Stone's theorem, the Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional Hausdorff topological spaces into three classes that are labeled by inequalities between three compactifications ofX, namely, the Stone-Čech compactificationβX, the Banaschewski compactificationβ0X, and the structure space&#x1D510;X,Fof the lattice-ordered commutative ringℭ(X,F)of all continuous functions onXtaking values in the ordered fieldF, equipped with its order topology. Some open problems are also stated.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Ehsan Momtahan

Gelfand-Naimark's theorem states that every commutative -algebra is isomorphic to a complex valued algebra of continuous functions over a suitable compact space. We observe that for a completely regular space , is dense--separable if and only if is -cogenerated if and only if every family of maximal ideals of with zero intersection has a subfamily with cardinal number less than and zero intersection. This gives a simple characterization of -cogenerated commutative unital -algebras via their maximal ideals.


Author(s):  
Joshua Sack ◽  
Saleem Watson

LetXbe a completely regular topological space. An intermediate ring is a ringA(X)of continuous functions satisfyingC*(X)⊆A(X)⊆C(X). In Redlin and Watson (1987) and in Panman et al. (2012), correspondences𝒵AandℨAare defined between ideals inA(X)andz-filters onX, and it is shown that these extend the well-known correspondences studied separately forC∗(X)andC(X), respectively, to any intermediate ring. Moreover, the inverse map𝒵A←sets up a one-one correspondence between the maximal ideals ofA(X)and thez-ultrafilters onX. In this paper, we define a function𝔎Athat, in the case thatA(X)is aC-ring, describesℨAin terms of extensions of functions to realcompactifications ofX. For such rings, we show thatℨA←mapsz-filters to ideals. We also give a characterization of the maximal ideals inA(X)that generalize the Gelfand-Kolmogorov theorem fromC(X)toA(X).


The main view of this article is the extended version of the fine topological space to the novel kind of space say fine fuzzy topological space which is developed by the notion called collection of quasi coincident of fuzzy sets. In this connection, fine fuzzy closed sets are introduced and studied some features on it. Further, the relationship between fine fuzzy closed sets with certain types of fine fuzzy closed sets are investigated and their converses need not be true are elucidated with necessary examples. Fine fuzzy continuous function is defined as the inverse image of fine fuzzy closed set is fine fuzzy closed and its interrelations with other types of fine fuzzy continuous functions are obtained. The reverse implication need not be true is proven with examples. Finally, the applications of fine fuzzy continuous function are explained by using the composition.


2015 ◽  
Vol 62 (1) ◽  
pp. 13-25
Author(s):  
Elżbieta Wagner-Bojakowska ◽  
Władysław Wilczyński

Abstract Let C0 denote a set of all non-decreasing continuous functions f : (0, 1] → (0, 1] such that limx→0+f(x) = 0 and f(x) ≤ x for every x ∊ (0, 1], and let A be a measurable subset of the plane. The notions of a density point of A with respect to f and the mapping defined on the family of all measurable subsets of the plane were introduced in Wagner-Bojakowska, E. Wilcziński, W.: Density topologies on the plane between ordinary and strong, Tatra Mt. Math. Publ. 44 (2009), 139 151. This mapping is a lower density, so it allowed us to introduce the topology Tf , analogously to the density topology. In this note, properties of the topology Tf and functions approximately continuous with respect to f are considered. We prove that (ℝ2, Tf) is a completely regular topological space and we study conditions under which topologies generated by two functions f and g are equal.


Sign in / Sign up

Export Citation Format

Share Document