scholarly journals On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs

2021 ◽  
Vol 22 (2) ◽  
pp. 259
Author(s):  
Svetlin Georgiev Georgiev ◽  
Karima Mebarki

The aim of this work is two fold: first  we  extend some results concerning the computation of the fixed point index for the sum of an expansive mapping and a $k$-set contraction  obtained in \cite{DjebaMeb, Svet-Meb}, to  the case of the sum $T+F$, where $T$ is a mapping such that $(I-T)$ is Lipschitz invertible and $F$ is a $k$-set contraction.  Secondly, as  illustration of some our theoretical results,  we study  the existence of positive solutions  for two classes of differential equations, covering a class of first-order ordinary differential equations (ODEs for short) posed on the positive half-line as well as  a class of  partial differential equations (PDEs for short).

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Li Wu ◽  
Chuanzhi Bai

In this paper, we investigate the existence of positive solutions of a class of fractional three-point boundary value problem with an advanced argument by using fixed-point index theory. Our results improve and extend some known results in the literature. Two examples are given to demonstrate the effectiveness of our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Jian Liu ◽  
Hua Su ◽  
Shuli Wang

Under the assumption of two coupled parallel subsuper solutions, the existence of at least six solutions for a kind of second-orderm-point differential equations system is obtained using the fixed point index theory. As an application, an example to demonstrate our result is given.


2014 ◽  
Vol 687-691 ◽  
pp. 1232-1236
Author(s):  
Chun Li Wang

In this paper we investigate the existence of positive solution of the following discrete two-order three-point boundary value problemWherandis sign-changing on . By using the fixed-point index theory, the existence of positive solutions for the above boundary value problem is obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongyu Li ◽  
Yang Chen

By using fixed-point index theory, we consider the existence of multiple positive solutions for a system of nonlinear Caputo-type fractional differential equations with the Riemann-Stieltjes boundary conditions.


2020 ◽  
Vol 24 (1) ◽  
pp. 109-129
Author(s):  
Abdulkadir Dogan ◽  
John R. Graef

In this paper, the authors examine the existence of positive solutions to a third-order boundary value problem having a sign changing nonlinearity. The proof makes use of fixed point index theory. An example is included to illustrate the applicability of the results.


2021 ◽  
Vol 26 (1) ◽  
pp. 151-168
Author(s):  
Alexandru Tudorache ◽  
Rodica Luca

We investigate the existence of positive solutions for a nonlinear Riemann–Liouville fractional differential equation with a positive parameter subject to nonlocal boundary conditions, which contain fractional derivatives and Riemann–Stieltjes integrals. The nonlinearity of the equation is nonnegative, and it may have singularities at its variables. In the proof of the main results, we use the fixed point index theory and the principal characteristic value of an associated linear operator. A related semipositone problem is also studied by using the Guo–Krasnosel’skii fixed point theorem.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Youzheng Ding ◽  
Jiqiang Jiang ◽  
Donal O’Regan ◽  
Jiafa Xu

In this paper, we use the fixed-point index and nonnegative matrices to study the existence of positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Peipei Ning ◽  
Qian Huan ◽  
Wei Ding

We investigate the following differential equations:-(y[1](x))'+q(x)y(x)=λf(x,y(x)), with impulsive and integral boundary conditions-Δ(y[1](xi))=Ii(y(xi)),i=1,2,…,m,y(0)-ay[1](0)=∫0ωg0(s)y(s)ds,y(ω)-by[1](ω)=∫0ωg1(s)y(s)ds, wherey[1](x)=p(x)y'(x). The expression of Green's function and the existence of positive solution for the system are obtained. Upper and lower bounds for positive solutions are also given. Whenp(t),I(·),g0(s), andg1(s)take different values, the system can be simplified to some forms which has been studied in the works by Guo and LakshmiKantham (1988), Guo et al. (1995), Boucherif (2009), He et al. (2011), and Atici and Guseinov (2001). Our discussion is based on the fixed point index theory in cones.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Wanjun Li

By using the fixed-point index theory, we discuss the existence, multiplicity, and nonexistence of positive solutions for the coupled systems of Hammerstein integral equation with parameters.


Sign in / Sign up

Export Citation Format

Share Document