scholarly journals Modelling and Study of a Microwave Plasma Source for High-rate Etching

Author(s):  
Steffen Pauly ◽  
Andreas Schulz ◽  
Matthias Walker ◽  
Günter Tovar ◽  
Monika Balk ◽  
...  

The aim of the study is to optimize an existing microwave powered remote plasma source (RPS) with respect to the etching rate and gas temperature and to simplify the setup to save production costs. The RPS, which is shown in figure 1, is a low-pressure plasma source where the plasma is generated and exists mainly in the chamber of the source. Only radicals migrate out of the RPS. This is one important feature, that the plasma source is used for etching processes when ion bombardment and high thermal strain of the substrate must be prevented. The etching process is a chemical process, where the radicals react with the substrate surface atoms forming gaseous molecules. The benefit is a damage-free, dry and clean substrate surface. To achieve these goals, a FEM-based model of the RPS has been developed to investigate the microwave distribution and the microwave coupling into the plasma chamber, as well as the plasma itself. In this paper different examples of FEM based microwave simulations by different conditions and their experimental validations will be presented. To compare the calculated electric field distribution in the RPS with the real field distribution, PMMA-substrates were placed inside the plasma chamber of the source. They are heated up by the electric field and evaluated with an infrared camera and liquid crystal sheets. Both the measured and the calculated field distribution show a very good conformity. When the electric field is high enough in the plasma chamber the plasma ignites, the electron density and thus the permittivity and the conductivity increase, which changes again the electric field distribution. For this purpose, the FEM-model has been extended by the Drude model1. The model considers the equation of motion with a damping term for the electrons, leading to an expression for the conductivity. Results for various electron densities as well as their corresponding electric field distributions are presented and compared with optical measurements.     Fig. 1. The figure shows the scheme of the RPS with its main components and functions.

2017 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
I. Made Yulistya Negara ◽  
Dimas Anton Asfani ◽  
Daniar Fahmi ◽  
Yusrizal Afif

2020 ◽  
Vol 12 ◽  
Author(s):  
Jyoti Katyal ◽  
Shivani Gautam

Background: A relatively narrow LSPR peak and a strong inter band transition ranging around 800 nm makes Al strongly plasmonic active material. Usually, Al nanoparticles are preferred for UV-plasmonic as the SPR of small size Al nanoparticles locates in deep UV-UV region of the optical spectrum. This paper focused on tuning the LSPR of Al nanostructure towards infrared region by coating Au layer. The proposed structure has Au as outer layer which prevent the further oxidation of Al nanostructure. Methods: The Finite Difference Time Domain (FDTD) and Plasmon Hybridization Theory has been used to evaluated the LSPR and field enhancement of single and dimer Al-Al2O3-Au MDM nanostructure. Results: It is observed that the resonance mode show dependence on the thickness of Al2O3 layer and also on the composition of nanostructure. The Au layered MDM nanostructure shows two peak of equal intensities simultaneously in UV and visible region tuned to NIR region. The extinction spectra and electric field distribution profiles of dimer nanoparticles are compared with monomer to reveal the extent of coupling. The dimer configuration shows higher field enhancement ~107 at 1049 nm. By optimizing the thickness of dielectric layer the MDM nanostructure can be used over UV-visible-NIR region. Conclusion: The LSPR peak shows dependence on the thickness of dielectric layer and also on the composition of nanostructure. It has been observed that optimization of size and thickness of dielectric layer can provide two peaks of equal intensities in UV and Visible region which is advantageous for many applications. The electric field distribution profiles of dimer MDM nanostructure enhanced the field by ~107 in visible and NIR region shows its potential towards SERS substrate. The results of this study will provide valuable information for the optimization of LSPR of Al-Al2O3-Au MDM nanostructure to have high field enhancement.


Sign in / Sign up

Export Citation Format

Share Document