scholarly journals Partial flexible job shop scheduling considering preventive maintenance and priorities

2020 ◽  
Vol 11 (2) ◽  
pp. 27
Author(s):  
Ameneh Farahani ◽  
Hamid Tohidi ◽  
Mehran Khalaj ◽  
Ahmad Shoja

<p>In this paper, a new mathematical programming model is proposed for a partial flexible job shop scheduling problem with an integrated solution approach. The purpose of this model is the assignment of production operations to machines with the goal of simultaneously minimizing operating costs and penalties. These penalties include delayed delivery, deviation from a fixed time point for preventive maintenance, and deviation from the priorities of each machine. Considering the priorities for machines in partial flexible job shop scheduling problems can be a contribution in closer to the reality of production systems. For validation and evaluation of the effectiveness of the model, several numerical examples are solved by using the Baron solver in GAMS. Sensitivity analysis is performed for the model parameters. The results further indicate the relationship between scheduling according to priorities of each machine and production scheduling.</p><p><em><br /></em></p><p><em><br /></em></p>

2019 ◽  
Vol 24 (3) ◽  
pp. 80 ◽  
Author(s):  
Prasert Sriboonchandr ◽  
Nuchsara Kriengkorakot ◽  
Preecha Kriengkorakot

This research project aims to study and develop the differential evolution (DE) for use in solving the flexible job shop scheduling problem (FJSP). The development of algorithms were evaluated to find the solution and the best answer, and this was subsequently compared to the meta-heuristics from the literature review. For FJSP, by comparing the problem group with the makespan and the mean relative errors (MREs), it was found that for small-sized Kacem problems, value adjusting with “DE/rand/1” and exponential crossover at position 2. Moreover, value adjusting with “DE/best/2” and exponential crossover at position 2 gave an MRE of 3.25. For medium-sized Brandimarte problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave a mean relative error of 7.11. For large-sized Dauzere-Peres and Paulli problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave an MRE of 4.20. From the comparison of the DE results with other methods, it was found that the MRE was lower than that found by Girish and Jawahar with the particle swarm optimization (PSO) method (7.75), which the improved DE was 7.11. For large-sized problems, it was found that the MRE was lower than that found by Warisa (1ST-DE) method (5.08), for which the improved DE was 4.20. The results further showed that basic DE and improved DE with jump search are effective methods compared to the other meta-heuristic methods. Hence, they can be used to solve the FJSP.


Sign in / Sign up

Export Citation Format

Share Document