scholarly journals Seismic Behavior and Recentering Capability Evaluation of Concentrically Braced Frame Structures using Superelastic Shape Alloy Active Control Bracing System

2012 ◽  
Vol 16 (6) ◽  
pp. 1-12 ◽  
Author(s):  
Jong Wan Hu ◽  
Doo Jae Rhee ◽  
Yang Hee Joe
2019 ◽  
Vol 22 (16) ◽  
pp. 3473-3486 ◽  
Author(s):  
Heng Liu ◽  
Yunfeng Zhang

Automated and robust damage detection tool is needed to enhance the resilience of civil infrastructures. In this article, a deep learning-based damage detection procedure using acceleration data is proposed as an automated post-hazard inspection tool for rapid structural condition assessment. The procedure is investigated with a focus on application in concentrically braced frame structure, a commonly used seismic force-resisting structural system with bracing as fuse members. A case study of six-story concentrically braced frame building was selected to numerically validate and demonstrate the proposed method. The deep learning model, a convolutional neural network, was trained and tested using numerically generated dataset from over 2000 sets of nonlinear seismic simulation, and an accuracy of over 90% was observed for bracing buckling damage detection in this case study. The results of the deep learning model were also discussed and extended to define other damage feature indices. This study shows that the proposed procedure is promising for rapid bracing condition inspection in concentrically braced frame structures after earthquakes.


1999 ◽  
Vol 26 (4) ◽  
pp. 379-394 ◽  
Author(s):  
M S Medhekar ◽  
DJL Kennedy

The seismic performance of single-storey steel buildings, with concentrically braced frames and a roof diaphragm that acts structurally, is evaluated. The buildings are designed in accordance with the National Building Code of Canada 1995 and CSA Standard S16.1-94 for five seismic zones in western Canada with seismicities ranging from low to high. Only frames designed with a force modification factor of 1.5 are considered. Analytical models of the building are developed, which consider the nonlinear seismic behaviour of the concentrically braced frame, the strength and stiffness contributions of the cladding, and the flexibility, strength, and distributed mass of the roof diaphragm. The seismic response of the models is assessed by means of a linear static analysis, a response spectrum analysis, a nonlinear static or "pushover" analysis, and nonlinear dynamic time history analyses. The results indicate that current design procedures provide a reasonable estimate of the drift and brace ductility demand, but do not ensure that yielding is restricted to the braces. Moreover, in moderate and high seismic zones, the roof diaphragm responds inelastically and brace connections are overloaded. Recommendations are made to improve the seismic performance of such buildings.Key words: analyses, concentrically braced frame, dynamic, earthquake, flexible diaphragm, low-rise, nonlinear, seismic design, steel.


Sign in / Sign up

Export Citation Format

Share Document