Denitrification with glucose as an external carbon source and investigation of microbial communities in a sequencing batch reactor treating reverse osmosis concentrate produced by a coking wastewater treatment plant

2017 ◽  
Vol 95 ◽  
pp. 152-161
Author(s):  
Enchao Li ◽  
Shuguang Lu
2018 ◽  
Vol 85 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Peter Leonard ◽  
Emma Tarpey ◽  
William Finnegan ◽  
Xinmin Zhan

This Research Communication describes an investigation into the viability of an Intermittently Aerated Sequencing Batch Reactor (IASBR) for the treatment of dairy processing wastewater at laboratory-scale. A number of operational parameters have been varied and the effect has been monitored in order to determine optimal conditions for maximising removal efficiencies. These operational parameters include Hydraulic Retention Time (HRT), Solids Retention Time (SRT), aeration rate and cycle length. Real dairy processing wastewater and synthetic wastewater have been treated using three laboratory-scale IASBR units in a temperature controlled room. When the operational conditions were established, the units were seeded using sludge from a municipal wastewater treatment plant for the first experiment, and sludge from a dairy processing factory for the second and third experiment. In experiment three, the reactors were fed on real wastewater from the wastewater treatment plant at this dairy processing factory. These laboratory-scale systems will be used to demonstrate over time that the IASBR system is a consistent, viable option for treatment of dairy processing wastewater in this sector. In this study, the capacity of a biological system to remove both nitrogen and phosphorus within one reactor will be demonstrated. The initial operational parameters for a pilot-scale IASBR system will be derived from the results of the study.


2014 ◽  
Vol 9 (2) ◽  
pp. 235-242 ◽  
Author(s):  
S. Morling ◽  
A. Franquiz ◽  
J. Måhlgren ◽  
Å. Westlund

A biological wastewater treatment plant, Nynäshamn treating municipal wastewater and septic sludge operated with a combination of sequencing batch reactor (SBR) units and constructed wetland is presented in this paper. The plant has to treat low temperature wastewater in winter time, still with demands for a biological nitrogen removal. Treatment results from a 13 year operation period are presented. Special attention was given to the nutrient removal during low temperature conditions. The combination of a SBR system along with classical chemical precipitation and a polishing step based on ‘natural’ extensive treatment has been a sustainable way to keep the discharge levels low. The combined treatment with SBR and the wetland at the Nynäshamn plant has resulted in improved discharge levels typically as follows (annual mean values); BOD7 3 mg/l, to be compared with the formal consent value of <15 mg/l, total P < 0.1 mg/l, to be compared with the formal consent value of <0.5 mg/l and total N 7 mg/l, to be compared with the formal consent value of <15 mg/l. It is also important to underline that the change of process train has resulted in a substantial saving of the precipitant agent for phosphorus removal. The needed dosage is now 50% of the previous dose, before the implementation of the SBR-units.


Author(s):  
Hazlami Fikri Basri ◽  
Aznah Nor Anuar ◽  
Mohd Hakim Ab Halim

Studying the possibility of forming aerobic granules on real domestic sewage was a logical step in the scaling-up process and development of Aerobic Granular Sludge (AGS) technology. It was noted that influent wastewater composition and Sequencing Batch Reactor (SBR) operation cycle time are important factors that can influence the formation of AGS. Therefore, this study aims to determine the suitability of influent wastewater from Bunus Wastewater Treatment Plant (WWTP) for AGS cultivation and then propose a proper SBR operation cycle time. In this study, wastewater characterization was done for the influent of wastewater treatment plant located in Bunus, Kuala Lumpur. The result was then analysed and compared with previous research to determine the suitability of AGS cultivation. The information on SBR from previous studies were also gathered to propose SBR operation cycle time that suit the Bunus WWTP influent. The findings indicate that the wastewater can be characterized as low strength domestic wastewater with low organic and nutrients content. The values of related parameters in this study have shown that influent wastewater of Bunus WWTP is suitable for cultivating AGS. For the proposed SBR operation, the cycle time is 3h, which consist of 60 min (fill), 110 min (aerate), 5 min (settle), and 5 min (discharge), respectively.


2017 ◽  
Vol 8 (3) ◽  
pp. 360-371 ◽  
Author(s):  
Enchao Li ◽  
Xuewen Jin ◽  
Shuguang Lu

Abstract A biological denitrifying process using methanol as a carbon source was employed for the treatment of reverse osmosis concentrate (ROC) from coking wastewater in a sequencing batch reactor (SBR). The results showed that the average removal efficiencies of chemical oxygen demand (COD), total organic carbon, total nitrogen and nitrate were 81.4%, 83.7%, 90.6% and 92.9%, respectively. Different microbial communities were identified on the MiSeq platform, showing that the most abundant bacterial phyla were Proteobacteria and Bacteroidetes, the sum of which, in this study, accounted for almost over 92%. The key genera responsible for denitrification were Hyphomicrobium, Thauera and Methyloversatilis. Quantitative real-time polymerase chain reaction was used to quantify the absolute abundances of microbial genera by using 16S rRNAs and denitrifying genes, such as narG, nirS and nirK, during both start-up and stable operations in the SBR. nirS was much more abundant than nirK, thus became the main functional gene to execute nitrite reduction. The high removal efficiency of COD and nitrate suggests that a biological denitrifying process using SBR is an effective technique for treating ROC from coking wastewater.


Sign in / Sign up

Export Citation Format

Share Document