Theoretical and experimental study of the adsorption characteristics of Methylene Blue on titanium dioxide surface using DFT and Monte Carlo dynamic simulation

2020 ◽  
Vol 190 ◽  
pp. 393-411
Author(s):  
Malika Khnifira ◽  
Sana El Hamidi ◽  
Aicha Machrouhi ◽  
Anass Mahsoune ◽  
Wafaa Boumya ◽  
...  
1996 ◽  
Vol 30 (7) ◽  
pp. 1670-1676 ◽  
Author(s):  
Ming-Chun Lu ◽  
Gwo-Dong Roam ◽  
Jong-Nan Chen ◽  
Chin-Pao Huang

Author(s):  
Nader Marzban ◽  
Ahmad Moheb ◽  
Svitlana Filonenko ◽  
Seyyed Hossein Hosseini ◽  
Mohammad Javad Nouri ◽  
...  

Development ◽  
1975 ◽  
Vol 33 (1) ◽  
pp. 1-11
Author(s):  
Carlos Argüello ◽  
María V. De La Cruz ◽  
Concepción Sánchez Gómez

A study was made of the development of the heart tube beginning from Hamburger & Hamilton (1951) stage 8+ up to stage 12. We used labelling with particles of iron oxide followed with time-lapse cinemicrophotography, staining with methylene blue, serial section and cutting the embryo in two halves. Our results led to the conclusion that the tubular heart is formed by the addition of precardiac material into its posterior end, but in addition it is necessary to consider the fusion of the myocardium in a cephalic direction, starting with the fusion of both heart primordia at the rostral end. By this fusion the most anterior part of the heart up to stage 12 is formed.


Author(s):  
Rusmidah Ali ◽  
Boon Siew Ooi

Dalam kajian ini, ZnO dan TiO2 digunakan sebagai fotomangkin dalam pendegradasian pewarna New Methylene Blue N (NMBN). Kadar fotodegradasi diukur menggunakan alat spektrofotometer UV-Vis. Dalam kajian ini, New Methylene Blue N menunjukkan nilai serapan pada λ = 590 nm dan λ = 286 nm. Lampu UV (λ = 354 nm) digunakan dalam proses fotodegradasi. Dalam proses degradasi menggunakan ZnO menunjukkan 81.42% NMBN terdegradasi pada λ = 590 nm dan 77.75% pada λ = 286 nm. Sebaliknya, degradasi menggunakan TiO2 adalah 25.68% pada λ = 590 nm dan 26.37% pada λ = 286 nm. Peratus degradasi New Methylene Blue N ialah 88.89% dan 68.94% pada masing-masing λ = 590 nm dan λ = 286 nm apabila ditambahkan dengan H2O2. Campuran ZnO dan TiO2 dalam nisbah 85: 15 (0.085 g; 0.015 g) merupakan campuran fotomangkin yang paling optimum iaitu dengan peratus degradasi NMBN sebanyak 96.97% dan 93.61% pada λ = 590 nm dan λ = 286 nm. Penambahan ion logam Cu2+ memberikan peratus degradasi tertinggi berbanding ion logam lain iaitu 83.83% pada λ = 590 nm. Penambahan ion logam Pb2+ memberikan peratus degradasi tertinggi pada λ = 286 nm iaitu 81.25% pewarna terdegradasi. Keadaan optimum dicapai pada pH 5.90, dengan peratus degradasi tertinggi iaitu 92.84% dan 89.30% pada masing-masing λ = 590 nm dan λ = 286 nm. Kata kunci: New Methylene Blue N; fotodegradasi; larutan; ZnO; TiO2 In this study, ZnO and TiO2 are used as photocatalyst to degrade the dye, New Methylene Blue N (NMBN). The photodegradation rate was measured using UV-Visible spectrophotometer. In this study, New Methylene Blue N showed absorption values at λ = 590 nm and λ = 286 nm. UV lamp (λ = 354 nm) is used in the photodegradation process. Results showed that ZnO is a better photocatalyst compared to TiO2. The degradation by ZnO showed that 81% of NMBN was degraded at λ = 590 nm and 77.75% at λ = 286 nm. In contratst, the degradation using TiO2 was 25.68% at λ = 590 nm and 26.37% at λ = 286 nm. The percent degradation of New Methylene Blue N is 88.89% and 68.94% at λ = 590 nm and λ = 286 nm respectively when H2O2 was added. A mixture of ZnO and TiO2 in the ratio of 85: 15 (0.085 g: 0.015 g) is the most optimum ratio for the mixed photocatalyst where the degradation percentage of NMBN are 96.97% and 93.61% at λ = 590 nm and λ = 286 nm. The addition of Cu2+ metal ion gave the highest percentage of degradation (83.83% at λ = 590 nm) compared to other metal ions. The addition of Pb2+ gave the highest percentage of degradation at λ = 286 nm with 81.25% degradation of the dye. The optimum condition was achieved at pH 5.90, which gave the highest percentage degradation, 92.84% and 89.30% at λ = 590 nm and λ = 286 nm respectively. Key words: New Methylene Blue N; photodegradation; aqueous; ZnO; TiO2


2010 ◽  
Vol 62 (8) ◽  
pp. 1705-1712 ◽  
Author(s):  
L. Y. Deng ◽  
G. R. Xu ◽  
G. B. Li

Adsorbent materials created from wastewater sludge have unique surface characteristics and could be effective in adsorption applications. In this research, the sludge-adsorbents were generated by pyrolyzing mixtures of sewage sludge and H2SO4. Scanning electron microscope (SEM), thermal analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) were used to analyze the properties of sludge-adsorbent. XPS results show that the adsorbent surface functional groups with high contents of oxygen-containing groups serve as active sites for the adsorption and affect the surface characteristics; the adsorption mechanism of methylene blue (MB) is mainly Brönsted acid-base reaction between the adsorbent surface and MB; and iodine atoms are bonded to the surface of the adsorbent mainly by dispersive interactions rather than by electrostatic interactions. The results also show that H2SO4 level, pyrolysis temperature and sulfuric acid/sludge weight ratio actually affected the adsorption characteristics. Using the conditions (H2SO4 level of 1–18 M, pyrolysis temperature of 650°C, and weight ratio of 0.8), the adsorption capacities for MB and iodine were 74.7–62.3 mg g−1 and 169.5–209.3 mg g−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document